Skip to main content
Log in

WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The plants during their sessile, autotrophic lifestyle are affected by wide range of environmental signals and regulate complex patterns of gene expression with the help of transcription factors. The WRKY transcription factors are considered as plant-specific, however, are also reported in protist, slime mold, fern and pine. The WRKY name is coined from its highly conserved 60 amino acid long WRKY domain. These TFs show W box specific binding which is also influenced by the W box flanking sequence. During evolution, the family has expanded in different patterns to facilitate distinct cellular, developmental, and physiological role in plants. The WRKY TFs form one of the largest families in flowering plants, and play a broad spectrum regulatory role as positive and negative regulators of plant defense regulation, abiotic stresses and also involved in growth and development of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BTH:

Benzo-(1,2,3) thiadiazole-7-carbothioic acid s-methyl ester

ETI:

Effector triggered immunity

FAC:

Fatty acid amino acid conjugates

GA:

Gibberelic acid

IBA:

Indole butyric acid

INA:

Isonicotinic acid

ISR:

Induced systemic resistance

JA:

Jasmonic acid

MAMPs:

Microbe associated molecular patterns

Mya:

Million years ago

NAA:

Naphthaleneacetic acid

PAMPs:

Pathogen associated molecular patterns

PR:

Pathogenesis related

PTI:

PAMP triggered immunity

SA:

Salicyclic acid

SAR:

Systematic acquired resistance

TF/TFs:

Transcription factor/s

UV:

Ultra violet

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  1. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    PubMed  CAS  Google Scholar 

  2. Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553

    PubMed  Google Scholar 

  3. Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K (2005) RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Res 12:247–256

    PubMed  CAS  Google Scholar 

  4. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59:191–203

    PubMed  CAS  Google Scholar 

  5. Mewes HW et al (1997) Overview of the yeast genome. Nature 387:7–65

    PubMed  Google Scholar 

  6. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    PubMed  CAS  Google Scholar 

  7. Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Int Plant Biol 49:827–842

    CAS  Google Scholar 

  8. Schmutz J, Cannon SB et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    PubMed  CAS  Google Scholar 

  9. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    PubMed  CAS  Google Scholar 

  10. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    PubMed  CAS  Google Scholar 

  11. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    PubMed  CAS  Google Scholar 

  12. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    PubMed  CAS  Google Scholar 

  13. Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12

    PubMed  CAS  Google Scholar 

  14. Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu UH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9:194

    PubMed  Google Scholar 

  15. Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    PubMed  CAS  Google Scholar 

  16. Yang B, Jiang Y, Rahman MH, Deyholos MK, Kav NN (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9:68

    PubMed  Google Scholar 

  17. Maeo K, Hayashi S, Kojima-Suzuki H, Morikami A, Nakamura D (2001) Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem 65:2428–2436

    PubMed  CAS  Google Scholar 

  18. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    PubMed  CAS  Google Scholar 

  19. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K (2005) Yokoyama S. Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956

    PubMed  CAS  Google Scholar 

  20. Duan M-R, Nan J, Liang YH, Mao P, Lu L, Li L, Wei C, Lai L, Li Y, Su XD (2007) DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res 35:1145–1154

    PubMed  CAS  Google Scholar 

  21. Cormack RS, Eulgem T, Rushton PJ, Kochner P, Hahlbrock K, Somssich IE (2002) Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochim Biophys Acta 1576:92–100

    PubMed  CAS  Google Scholar 

  22. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029

    PubMed  CAS  Google Scholar 

  23. Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779

    PubMed  CAS  Google Scholar 

  24. Riechmann JL et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    PubMed  CAS  Google Scholar 

  25. Pan YJ, Cho CC, Kao YY, Sun CH (2009) A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 284:17975–17988

    PubMed  CAS  Google Scholar 

  26. Glöckner G et al (2002) Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature 418:79–85

    PubMed  Google Scholar 

  27. Liu JJ, Ekramoddoullah AK (2009) Identification and characterization of the WRKY transcription factor family in Pinus monticola. Genome 52:77–88

    PubMed  CAS  Google Scholar 

  28. Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    PubMed  CAS  Google Scholar 

  29. Babu MM, Iyer LM, Balaji S, Aravind L (2006) The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34:6505–6520

    PubMed  CAS  Google Scholar 

  30. Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    PubMed  Google Scholar 

  31. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    PubMed  CAS  Google Scholar 

  32. Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet 244:563–571

    PubMed  CAS  Google Scholar 

  33. de Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24:4624–4631

    PubMed  Google Scholar 

  34. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    PubMed  CAS  Google Scholar 

  35. Mackay JP, Crossley M (1998) Zinc fingers are sticking together. Trends Biochem Sci 23:1–4

    PubMed  CAS  Google Scholar 

  36. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    PubMed  CAS  Google Scholar 

  37. Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defence signalling pathways. Mol Plant-Microbe Interact 16:295–305

    PubMed  CAS  Google Scholar 

  38. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    PubMed  CAS  Google Scholar 

  39. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Bio 13:132–138

    CAS  Google Scholar 

  40. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    PubMed  Google Scholar 

  41. Xie Z, Zhang Z-L, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242

    PubMed  CAS  Google Scholar 

  42. Qiu Y, Jing S, Fu J, Li L, Yu D (2004) Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull 49:2159–2168

    CAS  Google Scholar 

  43. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    PubMed  CAS  Google Scholar 

  44. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    PubMed  CAS  Google Scholar 

  45. Wei W, Zhang Y, Han L, Guan Z, Chai T (2008) A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27:795–803

    PubMed  CAS  Google Scholar 

  46. Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    PubMed  CAS  Google Scholar 

  47. Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu J, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    CAS  Google Scholar 

  48. Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ and Exp Bot 65:35–47

    CAS  Google Scholar 

  49. Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    PubMed  CAS  Google Scholar 

  50. Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    PubMed  CAS  Google Scholar 

  51. Zou XL, Shen QJ, Neuman D (2007) An ABA inducible WRKY gene integrates responses of creosote bush Larrea tridentata to elevated CO2 and abiotic stresses. Plant Sci 172:997–1004

    CAS  Google Scholar 

  52. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  53. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  54. Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    PubMed  CAS  Google Scholar 

  55. Katagiri F (2004) A global view of defense gene expression regulation—a highly interconnected signaling network. Curr Opin Plant Biol 7:506–511

    PubMed  CAS  Google Scholar 

  56. Kunkel BN, Brooks DM (2002) Cross talk between signalling pathways in pathogen defence. Curr Opin Plant Biol 5:325–331

    PubMed  CAS  Google Scholar 

  57. Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1539

    PubMed  CAS  Google Scholar 

  58. Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    PubMed  Google Scholar 

  59. Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    PubMed  CAS  Google Scholar 

  60. Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    PubMed  CAS  Google Scholar 

  61. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science 315:1098–1103

    PubMed  CAS  Google Scholar 

  62. Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    PubMed  Google Scholar 

  63. Wang L, Chen S, Kong W, Li S, Archbold DD (2006) Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol Technol 41:244–251

    Google Scholar 

  64. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    PubMed  CAS  Google Scholar 

  65. Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    PubMed  CAS  Google Scholar 

  66. Murray SL, Ingle RA, Petersen LN, Denby KJ (2007) Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol Plant Microbe Interact 20(11):1431–1438

    PubMed  CAS  Google Scholar 

  67. Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 42:1180–1192

    Google Scholar 

  68. Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    PubMed  CAS  Google Scholar 

  69. Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS et al (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550

    PubMed  CAS  Google Scholar 

  70. Ryu H-S et al (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep 25:836–847

    PubMed  CAS  Google Scholar 

  71. Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15:593–603

    PubMed  CAS  Google Scholar 

  72. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant–Microbe Interact 20:492–499

    PubMed  CAS  Google Scholar 

  73. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S (2007) Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    PubMed  CAS  Google Scholar 

  74. Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30–37

    PubMed  CAS  Google Scholar 

  75. Yoda H, Ogawa M, Yamaguchi Y, Koizumi N, Kusano T, Sanop H (2002) Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genom 267:154–161

    CAS  Google Scholar 

  76. Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20(7):1984–2000

    PubMed  CAS  Google Scholar 

  77. Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  78. Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL (2009) Evidence for a positive regulatory role of strawberry (Fragaria × ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. J Exp Bot 60:3043–3065

    PubMed  CAS  Google Scholar 

  79. Levée V, Major I, Levasseur C, Tremblay L, Mackay J, Séguin A (2009) Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. New Phytol 184:48–70

    PubMed  Google Scholar 

  80. Marchive C, Mzid R, Deluc L et al (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999–2010

    PubMed  CAS  Google Scholar 

  81. Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131(3):434–447

    PubMed  CAS  Google Scholar 

  82. Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72:215–234

    PubMed  CAS  Google Scholar 

  83. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    PubMed  CAS  Google Scholar 

  84. Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38:800–809

    PubMed  CAS  Google Scholar 

  85. Du L, Chen Z (2000) Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J 24:837–847

    PubMed  CAS  Google Scholar 

  86. Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1–1 in parsley. Plant Cell 16:2573–2585

    PubMed  CAS  Google Scholar 

  87. Yang P, Chen C, Wang Z, Fan B, Chen Z (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18:141–149

    CAS  Google Scholar 

  88. Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defence genes in tobacco. Plant J 38:142–151

    PubMed  CAS  Google Scholar 

  89. Menke FLH, Kang H-G, Chen Z, Park JM, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant–Microbe Interact 18:1027–1034

    PubMed  CAS  Google Scholar 

  90. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, Zhu S, Qiu J-L, Micheelsen P, Rocher A, Petersen M, Newman M-A et al (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    PubMed  CAS  Google Scholar 

  91. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    PubMed  CAS  Google Scholar 

  92. Hofmann MG, Sinha AK, Proels RK, Roitsch T (2008) Cloning and characterization of a novel LpWRKY1 transcription factor in tomato. Plant Physiol Biochem 46:533–540

    PubMed  CAS  Google Scholar 

  93. Koller D (1969) The physiology of dormancy and survival of plants in desert environments. Symp Soc Exp Biol 23:449–469

    PubMed  CAS  Google Scholar 

  94. Raven PH, Evert RF, Eichhorn SE (1992) Biology of plants. New York, Worth

    Google Scholar 

  95. Merquiol M, Pnueli L, Cohen M, Simovitch M, Goloubinoff P, Kaplan A, Mittler R (2002) Seasonal and diurnal variations in gene expression in the desert legume Retama raetam. Plant Cell Environ 25:1627–1638

    CAS  Google Scholar 

  96. Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319–330

    PubMed  CAS  Google Scholar 

  97. Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29:691–702

    PubMed  CAS  Google Scholar 

  98. Zou X, Neuman D, Shen QJ (2008) Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells. Plant Physiol 148:176–186

    PubMed  CAS  Google Scholar 

  99. Jiang W, Yu D (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and post-germination arrest of development by abscisic acid. BMC Plant Biol 22:994–996

    Google Scholar 

  100. Dilkes BP, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott RJ, Comai L (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6:2707–2720

    PubMed  CAS  Google Scholar 

  101. Lagace M, Matton DP (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189

    PubMed  CAS  Google Scholar 

  102. Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    PubMed  CAS  Google Scholar 

  103. Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    CAS  Google Scholar 

  104. Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    PubMed  CAS  Google Scholar 

  105. Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    PubMed  CAS  Google Scholar 

  106. Miao Y, Laun T, Smykowski A, Zentgraf U (2007) ArabidopsisMEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65:63–76

    PubMed  CAS  Google Scholar 

  107. Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  108. Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    PubMed  Google Scholar 

  109. Zhang Z-L, Xie Z, Zou X, Casaretto J, T-hD Ho, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    PubMed  CAS  Google Scholar 

  110. Sun TP, Gubler F (2004) Molecular mechanism of gibberellins signaling in plants. Annu Rev Plant Physiol Plant Mol Biol 55:197–223

    CAS  Google Scholar 

  111. Zhang ZL, Shin M, Zou X, Huang J, Ho TH, Shen QJ (2009) A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant Mol Biol 70:139–151

    PubMed  CAS  Google Scholar 

  112. Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    PubMed  CAS  Google Scholar 

  113. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293–303

    PubMed  CAS  Google Scholar 

  114. Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508–521

    PubMed  CAS  Google Scholar 

  115. Li S, Fu Q, Huang W, Yu D (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693

    PubMed  CAS  Google Scholar 

  116. Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279(3):303–312

    PubMed  CAS  Google Scholar 

  117. Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 177(4):977–989

    PubMed  CAS  Google Scholar 

  118. Oh SK, Yi SY, Yu SH, Moon JS, Park JM, Choi D (2006) CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens. Mol Cells 22:58–64

    PubMed  CAS  Google Scholar 

  119. Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM (2004) Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    PubMed  CAS  Google Scholar 

  120. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979

    PubMed  CAS  Google Scholar 

  121. Ze-Jian G, Yun-Chao K, Xu-Jun C, De-Bao L, Dao-Wen W (2004) Characterization of a rice WRKY gene whose expression is induced upon pathogen attack and mechanical wounding. Acta Botanica Sinica 46:955–964

    Google Scholar 

  122. Dellagi A, Helibronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, Toth IK, Cooke DE, Lyon GD, Birch PR (2000) A potato gene encoding a WRKY like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is co-regulated with class I endochitinase expression. Mol Plant–Microbe Interact 13:1092–1101

    PubMed  CAS  Google Scholar 

  123. Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    PubMed  CAS  Google Scholar 

  124. Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42:387–396

    PubMed  CAS  Google Scholar 

  125. Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    PubMed  Google Scholar 

  126. Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    PubMed  CAS  Google Scholar 

  127. Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance from DST and CSMCRI (CSIR), New Delhi, India is duly acknowledged for carrying out research on WRKY TFs. Authors are thankful to Dr P. K. Ghosh for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinita Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, P., Reddy, M.P. & Chikara, J. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38, 3883–3896 (2011). https://doi.org/10.1007/s11033-010-0504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0504-5

Keywords

Navigation