Skip to main content
Log in

QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Iron and zinc deficiencies are human health problems found throughout the world and biofortification is a plant breeding-based strategy to improve the staple crops that could address these dietary constraints. Common bean is an important legume crop with two major genepools that has been the focus of genetic improvement for seed micronutrient levels. The objective of this study was to evaluate the inheritance of seed iron and zinc concentrations and contents in an intra-genepool Mesoamerican × Mesoamerican recombinant inbred line population grown over three sites in Colombia and to identify quantitative trait loci (QTL) for each mineral. The population had 110 lines and was derived from a high-seed iron and zinc climbing bean genotype (G14519) crossed with a low-mineral Carioca-type, prostrate bush bean genotype (G4825). The genetic map for QTL analysis was created from SSR and RAPD markers covering all 11 chromosomes of the common bean genome. A set of across-site, overlapping iron and zinc QTL was discovered on linkage group b06 suggesting a possibly pleiotropic locus and common physiology for mineral uptake or loading. Other QTL for mineral concentration or content were found on linkage groups b02, b03, b04, b07, b08 and b11 and together with the b06 cluster were mostly novel compared to loci found in previous studies of the Andean genepool or inter-genepool crosses. The discovery of an important new locus for seed iron and zinc concentrations may facilitate crop improvement and biofortification using the high-mineral genotype especially within the Mesoamerican genepool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Muñoz C, Garza R, Cardona C (2006b) Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theor Appl Genet 112:913–923

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Buendia HF, Giraldo MC, Metais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Grusak M, Graham R, Beebe S (2009a) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, Muñoz-Torres M, Giraldo MC, Pedraza F (2009b) Development and diversity assessment of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:100

    Article  PubMed  Google Scholar 

  • Blair MW, Muñoz M, Pedraza F, Giraldo MC, Buendía HF, Hurtado N (2009c) Development of microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched small insert genomic libraries. Genome 52:772–782

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Monserrate F, Beebe SE, Restrepo J, Ortubé J (2010) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red mottled seed class. J Plant Regist 4:1–5

    Article  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    Article  PubMed  Google Scholar 

  • Briat J-F, Lobreaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193

    Article  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Buso GSC, Amarala ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Cichy KA, Forster S, Grafton KF, Hosfield GL (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45:864–870

    Article  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2007) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principals, perspectives and knowledge gaps. Adv Agron 70:77–144

    Article  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Grusak MA (2002) Enhancing mineral content in plant food products. J Am Coll Nutr 21:178S–183S

    PubMed  Google Scholar 

  • Guzman-Maldonado SH, Martínez O, Acosta-Gallegos J, Guevara-Lara FJ, Paredes-Lopez O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  CAS  Google Scholar 

  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe SE (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293

    Article  Google Scholar 

  • Islam FMA, Beebe SE, Muñoz M, Tohme J, Redden RJ, Basford KE (2004) Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool. Theor Appl Genet 108:243–252

    Article  PubMed  Google Scholar 

  • Klein MA, Grusak MA (2009) Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome 52:677–691

    Article  CAS  PubMed  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Mahuku GS (2004) A simple extraction method suitable for PCR based analysis of plant, fungal and bacterial DNA. Plant Mol Biol Rep 22:71–81

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235

    Article  Google Scholar 

  • Page AL (1982) Methods of soil analysis, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  • Peleg Z, Cakmak I, Osturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Sankaran RP, Huguet T, Grusak MA (2009) Identification of QTL affecting seed mineral concentration and content in the model legume Medicago truncatula. Theor Appl Genet 119:241–253

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Gepts P, Debouck D (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Phys 131:886–891

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. Symposium: plant breeding: a new tool for fighting micronutrient malnutrition. Special issue. J Nutr 132:495S–499S

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: productive, sustainable and nutritious food systems to meet human needs. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris. L.). J Agric Food Chem 48:3576–3580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Wolfgang Pfeiffer for valuable suggestions on biofortification, Octavio Mosquera in the CIAT analytical lab for help with AAS analysis, to Teresa Fowles at Waite lab for help with ICP analysis, to Agobardo Hoyos and Yercil Viera for excellent field assistance and two anonymous reviewers for valuable additions,. This work was funded by the Harvest Plus challenge program with help from the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by Y. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, M.W., Medina, J.I., Astudillo, C. et al. QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121, 1059–1070 (2010). https://doi.org/10.1007/s00122-010-1371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1371-0

Keywords

Navigation