Skip to main content
Log in

Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Trichoderma is known for being the most frequently used biocontrol agent in agriculture. A fundamental part of the Trichoderma antifungal system relies on a series of genes coding for a variety of extracellular lytic enzymes. Characterization of the polymorphism between five putative isoenzymatic activities [β-1,3-glucanase (EC 3.2.1.39, EC 3.2.1.58), β-1,6-glucanase (EC 3.2.1.75), cellulase (EC 3.2.1.4; EC 3.2.1.21, EC 3.2.1.91), chitinase (EC 3.2.1.30, EC 3.2.1.52), protease (EC 3.4.11; EC 3.4.13–19; EC 3.4.21–24, EC 3.4.99)] was carried out using 18 strains from three sections of Trichoderma. Of these, seven strains were from T. sect. Pachybasium, nine from T. sect. Trichoderma and two from T. sect. Longibrachiatum. Thirty-seven different alleles in total were identified: 13 for β-1,3-glucanase, four for β-1,6-glucanase, three for cellulase, eight for chitinase and nine for protease activity. A dendrogram (constructed by the unweighted pair group method with arithmetic averages) based on isoenzymatic data separated the 18 strains into three main enzymatic groups: T. harzianum, T. atroviride/T. viride/T. koningii and T. asperellum/T. hamatum/T. longibrachiatum. Isoenzymatic groupings obtained from biocontrol strains are discussed in relation to their phylogenetic location, based on their sequence of internal transcribed spacer 1 in ribosomal DNA and their antifungal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arisan-Atac I, Heidenreich E, Kubicek CP (1995) Randomly amplified polymorphic DNA fingerprinting identifies subgroups of Trichoderma viride and other Trichoderma sp. capable of chestnut blight biocontrol. FEMS Microbiol Lett 126:249–256

    Article  CAS  PubMed  Google Scholar 

  • Bara MT, Lima AL, Ulhoa CJ (2003) Purification and characterization of an exo-beta-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219:81–85

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Limón C, Delgado-Jarana J, Rey M (1998) Glucanolytic and other enzymes and their genes. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 101–127

    Google Scholar 

  • Bisset J (1991) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 62:248–254

    Article  Google Scholar 

  • Campo Rd, Criado JJ, Gheorghe R, González FJ, Hermosa MR, Sanz F, Manzano JL, Monte E, Rodríguez-Fernández E (2004) Thiourea derivatives and their complexes with Ni(II), Co(III) and Pt (II). Crystal structure of 3-benzoyl-1butyl-1-methyl-thiourea and 2-benzyl-6-diethylamino-4-phenyl-2H-[1,3,5] thiadiazine-2-carboxylic acid methyl ester. Antifungal activity. J Inorg Biochem 98:1307–1314

    Article  PubMed  Google Scholar 

  • Carsolio CA, Gutiérrez A, Jiménez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA 91:10903–10907

    CAS  PubMed  Google Scholar 

  • Chaverri P, Catlebury LA, Samuels GJ, Geiser DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27:302–313

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Romaine CP, Tan Q, Schlagnhaufer B, Ospina-Giraldo MD, Royse DJ, Huff DR (1999) PCR-based genotyping of epidemic and pre-epidemic Trichoderma isolates associated with green mould of Agaricus bisporus. Appl Environ Microbiol 65:2674–2678

    Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 153–173

    Google Scholar 

  • De la Cruz J, Rey M, Lora JM, Hidalgo-Gallego A, Domínguez F, Pintor-Toro JA, Llobell A, Benítez T (1993) Carbon source control on β-glucanases, chitobiose and chitinase from Trichoderma harzianum. Arch Microbiol 159:316–322

    Article  Google Scholar 

  • De la Cruz J, Pintor-Toro JA, Benítez T, Llobell A, Romero LC (1995) A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 177:6937–6945

    PubMed  Google Scholar 

  • Delgado-Jarana J, Rincón AM, Benítez T (2002) Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology 148:1305–1315

    CAS  PubMed  Google Scholar 

  • Donzelli BG, Harman GE (2001) Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol 67:5643–5647

    Google Scholar 

  • Enkerly J, Felix G, Boller T (1999) Elicitor activity of fungal xylanase does not depend on enzymatic activity. Plant Physiol 121:391–398

    Article  PubMed  Google Scholar 

  • Gams W, Meyer W (1998) What exactly is Trichoderma harzianum Rifai? Mycologia 90:904–915

    CAS  Google Scholar 

  • García-Carreño FL, Dimes LE, Haard NF (1993) Substrate–gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Gower JC (1996) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–328

    Google Scholar 

  • Grondona I, Hermosa MR, Tejada M, Gomis MD, Mateos PF, Bridge PD, Monte E, García-Acha I (1997) Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl Environ Microbiol 63:3189–3198

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2:43–56

    CAS  Google Scholar 

  • Hermosa MR, Grondona I, Iturriaga EA, Díaz-Mínguez JM, Castro C, Monte E, García-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898

    Google Scholar 

  • Hermosa MR, Grondona I, Díaz-Mínguez JM, Iturriaga EA, Monte E (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Curr Genet 38:343–350

    Google Scholar 

  • Hermosa MR, Keck EJ, Chamorro I, Rubio MB, Sanz L, Vizcaíno JA, Grondona I, Monte E (2004) Genetic variability shown by a collection of biocontrol isolates of Trichoderma. Mycol Res 108:897–906

    CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Google Scholar 

  • Inbar J, Abramski M, Coen D, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol 100:337–346

    Google Scholar 

  • Keszler A, Forgacs E, Kotali L, Vizcaíno JA, Monte E, García-Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography–mass spectroscopy. J Chromatogr Sci 38:421–424

    CAS  PubMed  Google Scholar 

  • Kim D, Baek J, Uribe P, Kenerly C, Cook D (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotides sequences. J Mol Evol 2:87–90

    Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–24

    CAS  Google Scholar 

  • Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on south-east Asian isolates. Fungal Genet Biol 38:310–319

    Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Meyer W, Kubicek CP, Börner T (1997) Revision of Trichoderma section Longibrachitaum including related teleomorphs based on an analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia 89:442–460

    CAS  Google Scholar 

  • Kullnig C, Szakacs G, Kubicek C (2000) Molecular identification of Trichoderma species from Russia, Siberia and Himalaya. Mycol Res 104:1117–1125

    Article  CAS  Google Scholar 

  • Kullnig-Gradinger C, Szakacs G, Kubicek C (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lee CF, Hseu TH (2002) Genetic relatedness of Trichoderma sect. Pachybasium species based on molecular approaches. Can J Microbiol 48:831–840

    Article  CAS  PubMed  Google Scholar 

  • Leuchtmann A, Petrini O, Samuels GJ (1996) Isozymes subgroups in Trichoderma section Longibrachiatum. Mycologia 88:384–394

    CAS  Google Scholar 

  • Lieckfeldt E, Samuels GJ, Nirenberg HI, Petrini O (1999) A morphological and molecular perspective of Trichoderma viride: is it one or two species. Appl Environ Microbiol 65:2418–2428

    Google Scholar 

  • Lorito M (1998) Chitinolytic enzymes and their genes. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 73–99

    Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kulling CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863

    Google Scholar 

  • Manczinger L, Polner G (1987) Cluster analysis of carbon source utilization patterns of Trichoderma isolates. Syst Appl Microbiol 9:214–217

    CAS  Google Scholar 

  • Mateos PF, Jiménez-Zurdo JI, Chen J, Squartini AS, Haak SK, Martínez-Molina E, Hubbell DH, Dazzo F (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58:1816–1822

    Google Scholar 

  • McGrew BR, Green MD (1990) Enhanced removal of detergent and recovery of enzymatic activity following sodium dodecyl sulphate–polyacrylamide gel electrophoresis: use of casein in gel wash buffer. Anal Biochem 189:68–74

    CAS  PubMed  Google Scholar 

  • Migheli Q, Gonzales-Candelas L, Dealessi L, Camponogara A, Ramón-Vidal D (1998) Transformants of T. longibrachiatum overexpressing the β-1,4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimun on cucumber. Phytopathology 88:673–677

    CAS  Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between agricultural biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  PubMed  Google Scholar 

  • Monte E, Bridge PD, Sutton BC (1990) Physiological and biochemical studies in Coelomyces. Stud Mycol 32:21–28

    Google Scholar 

  • Monte E, Gómez MI, Guerra I, Llobell A, Bautista J (2003) Effect of low molecular chitin on the production of proteins with antifungal activity by Trichoderma atroviride NBT-11. Bull Pol Acad Sci Chem 51:25–34

    CAS  Google Scholar 

  • Montero M, Rey M, González FJ, Sanz L, Monte E, Llobell A (2001) β-1,6-glucanase isozyme system in Trichoderma harzianum. Isolation of two new genes coding for proteins with β-1,6-endoglucanase activity. IOBC/WPRS Bull 24:325–328

    Google Scholar 

  • Muthumeenakshi S, Mills PR, Brown AE, Seaby DA (1994) Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in British Isles. Microbiology 140:769–777

    CAS  PubMed  Google Scholar 

  • Ospina-Giraldo MD, Royse DJ, Chen X, Romaine CP (1998) Molecular phylogenetic analyses of biological control strains of Trichoderma harzainum and other biotypes of Trichoderma spp associated with mushroom green mould. Phytopathology 89:308–313

    Google Scholar 

  • Ospina-Giraldo MD, Royse DJ, Thon MR, Chen X, Romaine CP (1999) Phylogenetic relationship of Trichoderma harzianum causing mushroom green mould in Europe and North America to other species of Trichoderma of world-wide sources. Mycologia 90:76–81

    Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1989) Direct detection of beta-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Anal Biochem 182:136–140

    CAS  PubMed  Google Scholar 

  • Ramot O, Viterbo A, Friesem D, Oppenheim A, Chet I (2004) Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Curr Genet 45:205–213

    Google Scholar 

  • Samuels GJ, Petrini O, Manguin S (1994) Morphological and macromolecular characterization of Hypocrea schweinitzii and its Trichoderma anamorph. Mycologia 86:421–435

    CAS  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mould epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Google Scholar 

  • Sivasithamparam KY, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Soler A, De la Cruz J, Llobell A (1999) Detection of β-1,6-glucanase isozymes from Trichoderma strains in sodium dodecyl sulphate–polyacrylamide gel electrophoresis and isoelectrofocusing gels. J Microbiol Methods 35:245–251

    Article  CAS  PubMed  Google Scholar 

  • Stasz TE, Nixon K, Harman GE, Weeden NF, Kuter GA (1989) Evaluation of phenetic species and phylogenetic relationships in the genus Trichoderma by cladistic analysis of isozymes polymorphism. Mycologia 81:391–403

    Google Scholar 

  • Suárez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X window interface: flexible strategies for multiple sequence alignment by quality analysis tools. Nucleic Acids Res 24:4876–4886

    Article  Google Scholar 

  • Tronsmo A, Harman GE (1993) Detection and quantification of N-acetyl-β-d-glucosaminidase, chitobiosidase and endochitinase in solutions and on gels. Anal Biochem 208:74–79

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Ramot O, Chernin L, Chet I (2002a) Significance of lytic enzymes from Trichoderma spp in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81:549–556

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002b) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  CAS  PubMed  Google Scholar 

  • Zamir D, Chet I (1985) Application of enzyme electrophoresis for the identification of isolates in Trichoderma harzianum. Can J Bot 31:578–580

    CAS  Google Scholar 

  • Zimand G, Valinsky L, Elad Y, Chet I, Manulis S (1994) Use of the RAPD procedure for the identification of Trichoderma strains. Mycol Res 98:531–534

    CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Emma J. Keck for the critical revision of this manuscript. The present study was funded with grants from the European Commission (FAIR6-CT98-4140) and the Fundación Andaluza de I+D (Sevilla, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Monte.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, L., Montero, M., Grondona, I. et al. Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species. Curr Genet 46, 277–286 (2004). https://doi.org/10.1007/s00294-004-0532-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0532-6

Keywords

Navigation