Skip to main content
Log in

Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mycoparasitic Trichoderma strains secrete a complex set of hydrolytic enzymes under conditions related to antagonism. Several proteins with proteolytic activity were detected in culture filtrates from T. harzianum CECT 2413 grown in fungal cell walls or chitin and the protein responsible for the main activity (PRA1) was purified to homogeneity. The enzyme was monomeric, its estimated molecular mass was 28 kDa (SDS-PAGE), and its isoelectric point 4.7–4.9. The substrate specificity and inhibition profile of the enzyme correspond to a serine-protease with trypsin activity. Synthetic oligonucleotide primers based on N-terminal and internal sequences of the protein were designed to clone a full cDNA corresponding to PRA1. The protein sequence showed <43% identity to mammal trypsins and 47–57% to other fungal trypsin-like proteins described thus far. Northern analysis indicated that PRA1 is induced by conditions simulating antagonism, is subject to nitrogen and carbon derepression, and is affected by pH in the culture media. The number of hatched eggs of the root-knot nematode Meloidogyne incognita was significantly reduced after incubation with pure PRA1 preparations. This nematicidal effect was improved using fungal culture filtrates, suggesting that PRA1 has additive or synergistic effects with other proteins produced during the antagonistic activity of T. harzianum CECT 2413. A role for PRA1 in the protection of plants against pests and pathogens provided by T. harzianum CECT 2413 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahman J, Johansson T, Olsson M, Punto PJ, van den Hondel CAMJJ, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  CAS  PubMed  Google Scholar 

  • Ait-Lahsen H, Soler A, Rey M, de la Cruz J, Monte E, Llobell A (2001) Molecular and antifungal properties of an exo-α-glucanase, AGN13.1, from the biocontrol fungus Trichoderma harzianum. App Environ Microbiol 67:5833–5839

    Article  CAS  Google Scholar 

  • Benitez T, Limon MC, Delgado-Jarana J, Rey M (1998) Glucanolytic and other enzymes and their genes. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 101–127

  • Bertagnolli BL, Dal Soglio FK, Sinclair JB (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol Mol Plant Pathol 48:145–160

    Article  CAS  Google Scholar 

  • Biely P, Tenkanen M (1998) Enzymology of hemicellulose degradation. In: Kubicek CPHarman GE (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 25–47

  • Bonants PJ, Fitters PF, Thijs H, den Belder E, Waalwijk C, Henfling JW. (1995) A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology 141:775–784

    CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sesitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brants A, Brown CR, Earle ED (2000) Trichoderma harzianum endochitinase does not provide resistance to Meloidogyne hapla in transgenic tobacco. J Nematol 32:289–296

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

  • Carlile AJ, Bindschedler LV, Bailey AM, Bowyer P, Clarkson JM, Cooper RM (2000) Characterization of SNP1, a cell wall-degrading trypsin, produced during infection by Stagonospora nodorum. Mol Plant Microbe Interact 13:538–550

    CAS  PubMed  Google Scholar 

  • Cortes C, Gutierrez A, Olmedo V, Inbar J, Chet I, Herrera-Estrella A (1998) The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Gen Genetics 260:218–225

    Article  CAS  Google Scholar 

  • De la Cruz J, Hidalgo-Gallego A, Lora JM, Benitez T, Pintor Toro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:856–867

    Google Scholar 

  • De Marco JL, Felix CR (2002) Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ bromm disease. BMC Biochem 3:3–9

    Article  PubMed  Google Scholar 

  • Donzelli BGG, Harman GE (2001) Interaction of ammonium, glucose, and chitin, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol 67:5643–5647

    Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Fleet G, Phaff HJ (1974) Glucanases in Schizosaccharomyces: isolation and properties of the cell wall associated β-1,3-glucanases. J Biol Chem 249:1717–1728

    CAS  PubMed  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr Genet 31:30–37

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    CAS  PubMed  Google Scholar 

  • Goldman GH, Pellizon CH, Marins M, McInervey JO, Goldman MHS (1998) Trichoderma spp. genome and gene structure. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Basic biology, taxonomy and genetics, vol 1. Taylor and Francis, London, pp 209–224

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York

  • Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 229–265

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    CAS  PubMed  Google Scholar 

  • Hjeljord I, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 131–151

  • Holwerda BC, Rogers JC (1992) Purification and characterization of Aleurain. A plant thiol protease functionally homologous to mammalian cathepsin H. Plant Physiol 99:848–855

    CAS  Google Scholar 

  • Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3/β-1,6-glucan heteropolymer. Glycobiology 3:337–345

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotides sequences. J Mol Evol 2:87–90

    Google Scholar 

  • Lee YP, Takahashi T (1966) An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem 14:71–77

    CAS  Google Scholar 

  • Lorito M (1998) Chitinolytic enzymes and their genes. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, pp 73–99

  • Markaryan A, Lee JD, Sirakova TD, Kolattukudy PE (1996) Specific inhibition of mature fungal serine proteinases and metalloproteinases by their propeptides. J Bacteriol 178:2211–2215

    CAS  PubMed  Google Scholar 

  • Meera MS, Shivana MB, Kageyama K, Hyakumachi M (1994) Plant growth promoting fungi frim zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopahology 84:1399–1406

    Google Scholar 

  • Murphy JM, Walton JD (1996) Three extracellular proteases form Cochliobolus carbonum: cloning and targeted disruption of ALP1. Mol Plant Microbe Interact 9:290–297

    CAS  PubMed  Google Scholar 

  • Nico AI, Rapoport HF, Jimenez-Diaz RM, Castillo P (2002) Incidence and population density of plant-parasitic nematodes associated with olive planting stocks at nurseries in Southern Spain. Plant Dis 86:1075–1079

    Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Olmedo-Monfil V, Mendoza-Mendoza A, Gomez I, Cortes C, Herrera-Estrella A (2002) Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride. Mol Gen Genom 267:703–712

    Article  CAS  Google Scholar 

  • Penttilä M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the filamentous fungus Trichoderma reesei. Gene 61:155–164

    PubMed  Google Scholar 

  • Perona JJ, Hedstrom L, Rutter WJ, Fletterick RJ (1995) Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry 34:1489–1499

    CAS  PubMed  Google Scholar 

  • Rao MS, Reddy PP, Nagesh M (1996) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on egg plant. Nematol Mediterr 26: 59–62

    Google Scholar 

  • Reader U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    CAS  Google Scholar 

  • Rodriguez Kabana R, Kelley WD, Curl EA (1978) Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii in soil. Can J Microbiol. 24:487–490

  • Rypniewski WR, Hastrup S, Betzel C, Dauter M, Dauter Z, Papendorf G, Branner S, Wilson KS (1993) The sequence and X-ray structure of the trypsin from Fusarium oxysporum. Protein Eng 6:341–348

    CAS  PubMed  Google Scholar 

  • Saifullah, Thomas BJ (1996) Studies on the parasitism of Globodera rostochiensis by Trichoderma harzianum using low temperature scanning electron microscopy. Afro-Asian J Nematol 6:117–122

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    PubMed  Google Scholar 

  • Screen SE, St. Leger RJ (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin. J Biol Chem 275:6689–6694

    Article  CAS  PubMed  Google Scholar 

  • Segers R, Butt TM, Kerry BR, Peberdy JF (1994) The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology 140:2715–2723

    CAS  PubMed  Google Scholar 

  • Sharon E, Bar-Eyal I, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopahology 91:687–693

    Google Scholar 

  • Smithson SL, Paterson IC, Bailey AM, Screen SE, Hunt BA, Cobb BD, Cooper RM, Charnley AK, Clarkson JM (1995) Cloning and characterisation of a gene encoding a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae. Gene 166:161–165

    Article  CAS  PubMed  Google Scholar 

  • Spiegel Y, Chet I (1998) Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integr Pest Manage Rev 3:169–494

    Article  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1995) Protein synthesis in Metarhizium anisopliae growing on host. Mycol Res 99:1934–1040

    Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW (1996) Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 62:1257–1264

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignement by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  Google Scholar 

  • Uchikoba T, Mase T, Arima K, Yonezawa H, Kaneda M (2001) Isolation and characterization of a trypsin-like protease from Trichoderma viride. Biol Chem 382:1509–1513

    CAS  PubMed  Google Scholar 

  • Urtz BE, Rice WC (2000) Purification and characterization of a novel protease form Bauveria bassiana. Mycol Res 104:180–186

    CAS  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  CAS  PubMed  Google Scholar 

  • Windham GL, Windham MT, Pederson GA (1993) Interaction of Trichoderma harzianum, Meloidogyne incognita, and Meloidogyne arenariaon Trifolium repens. Nematropica 23:99–103

    Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Llobell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suarez, B., Rey, M., Castillo, P. et al. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65, 46–55 (2004). https://doi.org/10.1007/s00253-004-1610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1610-x

Keywords

Navigation