Skip to main content

Technical Developments for Vegetable Waste Biomass Degradation by Thermophiles

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Abstract

Environmental concerns such as greenhouse gas emission and fossil fuels depletion, have driven increasing technological and economical interest in the study of biorefining processes in order to convert organic waste materials (biomass) into bioethanol, biodiesel, building blocks (chemicals) and biomaterials. Vegetable waste biomass is produced continuously at global level by agro-industries, agriculture and forestry and according to its origin, it can be distinguished in three main groups i.e.: food wastes, crop residues and forestry/wood residues. Plant biomass and vegetable industrial wastes such as lignocellulosic biomass is object of great interest since it can be hydrolysed to have starch, (hemi)cellulose and lignin that in turn will be converted in value added chemicals and/or biofuels. Pre-treatment steps using physico-chemical or enzymatic processes, make the conversion of lignocellulosic biomass into biofuels more expensive than the extraction of fossil fuels. This chapter underlines the capability of thermophiles and of their enzymes to bypass the problems and limits linked with the lignocellulosic biomass use. Studies concerning the exploitation of agro-waste as growth medium for the production of biotechnologically useful extremophilic microorganisms and their relative enzymes, the pre-treatment and digestion of lignocellulosic fractions in order to obtain mono- and oligosaccharides, the use of thermophilic enzymes in comparison to that of commercial, for a convenient set up of a total degrading process, the chemical procedures for the characterization of new compounds obtained from lignocellulosic materials, are also discussed. Moreover, the opportunity to employ thermophiles in the conversion of lignocellulosic materials into ethanol using only one step process, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aachary AA, Prapulla SG (2009) Value addition to corncob: production and characterization of xylo-oligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresour Technol 100:991–995

    Article  CAS  PubMed  Google Scholar 

  • Aachary AA, Prapulla SG (2011) Xylo-oligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterisation, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10(1):2–16

    Article  CAS  Google Scholar 

  • Abdel-Fattah YR, El-Helow ER, Ghanem KM, Lotfy WA (2007) Application of factorial designs for optimization of avicelase production by a thermophilic Geobacillus isolate. Res J Microbiol 2:13–23

    Article  CAS  Google Scholar 

  • Afzal S, Saleem M, Yasmin M, Naz M, Imran M (2010) Pre and post cloning characterization of a β-1,4-endoglucanase from Bacillus sp. Mol Biol Rep 37:1717–1723

    Article  CAS  PubMed  Google Scholar 

  • Aguedo M, Fougnies C, Dermiencec M, Richel A (2014) Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydr Polym 105:317–324

    Article  CAS  PubMed  Google Scholar 

  • Akpinar O, Erdogan K, Bostanci S (2009) Production of xylo-oligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr Polym 344:660–666

    Article  CAS  Google Scholar 

  • Akpinar O, Erdogan K, Bakir U, Yilmaz L (2010) Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylo-oligosaccharides. LWT-Food Sci Technol Int 43(1):119–125

    Article  CAS  Google Scholar 

  • Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366

    Article  CAS  PubMed  Google Scholar 

  • Antranikian G, Egorova K (2007) Extremophiles, a unique resource of biocatalysts for industrial biotechnology. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 361–406

    Chapter  Google Scholar 

  • Azevedo Carvalho AF, de Oliva Neto P, da Silva Fernandes D, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85

    Article  CAS  Google Scholar 

  • Bai Y, Wang J, Zhang Z, Pengjun Shi P, Luo H, Huang H, Luo C, Yao B (2010a) Expression of an extremely acidic beta-1,4-glucanase from thermoacidophilic Alicyclobacillus sp. A4 in Pichia pastoris is improved by truncating the gene sequence. Microb Cell Fact 9:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B (2010b) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37:187–194

    Article  CAS  PubMed  Google Scholar 

  • Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    Article  CAS  PubMed  Google Scholar 

  • Bataillon M, Cardinali APN, Castillon N, Duchiron F (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb Technol 26:187–192

    Article  CAS  PubMed  Google Scholar 

  • Bendahou A, Dufresne A, Kaddami H, Habibi Y (2007) Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohydr Polym 68(3):601–608

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kurabi A, Bura R, Tu MB, Kilburn D, Saddler J (2005) Weak lignin binding enzymes. A novel approach to improve the activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 121:163–170

    Article  PubMed  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  PubMed  Google Scholar 

  • Bian J, Peng F, Peng XP, Xu F, Sun RC, Kennedy JF (2012) Isolation of hemicelluloses from sugarcane bagasse at different temperatures: structure and properties. Carbohydr Polym 88:638–645

    Article  CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  PubMed  Google Scholar 

  • Bok J, Dienesh A, Yernool D, Eveleigh D (1998) Purification, characterization and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo Rodriguez V, Jurado Alameda E, Martinez Gallegos JF, Reyes Requena A, Garcia Lopez AI (2006) Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis. Biotechnol Prog 22(3):718–722

    Article  CAS  PubMed  Google Scholar 

  • Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204

    Article  CAS  Google Scholar 

  • Bronnenmeier K, Staudenbauer W (1990) Cellulose hydrolysis by a highly thermostable endo-1,4-glucanase (Avicelase I) from Clostridium stercorarium. Enzyme Microb Technol 12:431–436

    Article  CAS  Google Scholar 

  • Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci U S A 108:13752–13757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Lai C, Li S, Liang Z, Zhu M, Liang S, Wang J (2011) Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense. Enzyme Microb Technol 48:155–161

    Article  CAS  PubMed  Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766

    Article  CAS  PubMed  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  PubMed  Google Scholar 

  • Chang T, Yao S (2011) Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 92:13–27

    Article  CAS  PubMed  Google Scholar 

  • Chang ST, Parker KN, Bauer MW, Kelly RM (2001) Alpha-glucosidase from Pyrococcus furiosus. Methods Enzymol 330:260–269

    Article  CAS  PubMed  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    Article  CAS  PubMed  Google Scholar 

  • Damiano VB, Ward R, Gomes E, Alves-Prado HF, Da Silva R (2006) Purification and characterization of two xylanases from alkalophilic and thermophilic Bacillus licheniformis 77–2. Appl Biochem Biotechnol 129–132:289–302

    Article  PubMed  Google Scholar 

  • Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, Birbir M (2015) Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles. doi:10.1007/s00792-015-0735-4

    PubMed  Google Scholar 

  • Das H, Sing SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry – a critical appraisal. CRC Cr Rev Food Sci 44:77–89

    Article  Google Scholar 

  • de Souza PM, Magalhães PDO (2010) Application of microbial α-amylase in industry – a review. Braz J Microbiol 41(4):850–861

    PubMed  PubMed Central  Google Scholar 

  • Dheeran P, Nandhagopal N, Kuma S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39(6):851–860

    Article  CAS  PubMed  Google Scholar 

  • Dhiman SS, Sharma J, Battan B (2008) Industrial aspects and future prospects of microbial xylanases: a review. BioResources 3:1377–1402

    Google Scholar 

  • Di Donato P, Fiorentino G, Anzelmo G, Tommonaro G, Nicolaus B, Poli A (2011) Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste Biomass Valoriz 2:103–111

    Article  CAS  Google Scholar 

  • Di Donato P, Finore I, Anzelmo G, Lama L, Nicolaus B, Poli A (2014) Biomass and biopolymer production using vegetable wastes as cheap substrates for extremophiles. Chem Eng Trans 38:163–168

    Google Scholar 

  • Dimarogona M, Topakas E, Olsson L, Christakopoulos P (2012) Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487

    Article  CAS  PubMed  Google Scholar 

  • Dipasquale L, Romano I, Picariello G, Calandrelli V, Lama L (2014) Characterization of a native cellulase activity from an anaerobic thermophilic hydrogen-producing bacterium Thermosipho sp. strain 3. Ann Microbiol 64:1493–1503

    Article  CAS  Google Scholar 

  • Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270:3593–3602

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes – biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Fawzi EM (2011) Highly thermostable xylanase purified from Rhizomucor miehei NRL 3169. Acta Biol Hung 62:85–94

    Article  CAS  PubMed  Google Scholar 

  • Finore I, Kasavi C, Poli A, Romano I, Toksoy Oner E, Kirdar B, Dipasquale L, Nicolaus B, Lama L (2011) Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting alpha-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. World J Microbiol Biotechnol 27:2425–2433

    Article  CAS  Google Scholar 

  • Finore I, Di Donato P, Poli A, Kirdar B, Kasavi C, Toksoy EO, Nicolaus B, Lama L (2014) Use of agro waste biomass for α-amylase production by Anoxybacillus amylolyticus: purification and properties. J Microb Biochem Technol 6:320–326

    CAS  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Gao F, Wang L, Geng C, Chi L, Zhao J, Qu Y (2012) N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. J Biol Chem 287:15906–15915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wetexploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  CAS  PubMed  Google Scholar 

  • Girfoglio M, Rossi M, Cannio R (2012) Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-Glucanase. J Bacteriol 194(18):5091–5100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375

    Article  PubMed  CAS  Google Scholar 

  • Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSMS237. Extremophiles 1:151–156

    Article  CAS  PubMed  Google Scholar 

  • Himmel M, Adney W, Tucker M, Grohmann K (1994) Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068. US Patent 5,275,944

    Google Scholar 

  • Hoffmann RA, Geijtenbeek T, Kamerling JP, Vliegenthart JF (1992a) 1H-N.M.R. study of enzymically generated wheat-endosperm arabinoxylan oligosaccharides: structures of hepta- to tetradeca-saccharides containing two or three branched xylose residues. Carbohydr Res 223:19–44

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann RA, Kamerling JP, Vliegenthart JFG (1992b) Structural features of a water-soluble arabinoxylan from the endosperm of wheat. Carbohydr Res 226(2):303–311

    Article  CAS  Google Scholar 

  • Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Cho SJ, Kim H, Yun HD (2007) Construction of the bifunctional enzyme cellulase-beta-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Lett 29(6):931–936

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049

    CAS  Google Scholar 

  • Huang XP, Monk C (2004) Purification and characterization of a cellulose (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World J Microbiol Biotechnol 20:85–92

    Article  CAS  Google Scholar 

  • Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  CAS  PubMed  Google Scholar 

  • Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46:1257–1263

    Article  CAS  Google Scholar 

  • Jain I, Kumar V, Satyanarayana T (2014) Applicability of recombinant beta-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour Technol 170:462–469

    Article  CAS  PubMed  Google Scholar 

  • Jin AX, Ren JL, Peng F, Xu F, Zhou GY, Sun RC, Kennedy JF (2009) Comparative characterization of degraded and non-degradative hemicelluloses from barley straw and maize stems: composition, structure, and thermal properties. Carbohydr Polym 78:609–619

    Article  CAS  Google Scholar 

  • Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajò JC, Girio FM, Schols HA, Voragen AGJ (2002) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr Polym 50(1):47–56

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Biorefinery-systems. Chem Biochem Eng Q 18(1):1–6

    Article  CAS  Google Scholar 

  • Karlsson J, Momcilovic D, Wittgren B, Schulein M, Tjerneld F, Brinkmalm G (2002) Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers 63(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Kasavi C, Finore I, Lama L, Nicolaus B, Oliver SG, Toksoy EO, Kirdar B (2012) Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass Bioenergy 45:230–238

    Article  CAS  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  CAS  PubMed  Google Scholar 

  • Khandeparkar R, Bhosle NB (2006) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol 157:315–325

    Article  CAS  PubMed  Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HW, Ishikawa K (2010) Complete saccharification of cellulose at high temperature using endocellulase and beta-glucosidase from Pyrococcus sp. J Microbiol Biotechnol 20(5):889–892

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Peeples TL (2006) Screening extremophiles for bioconversion potentials. Biotechnol Prog 22(6):1720–1724

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH (2004) Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70(7):3933–3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan YH, Liong MT (2008) Chemical and physicochemical characterization of agrowaste fibrous materials and residues. J Agric Food Chem 56:9252–9257

    Article  CAS  PubMed  Google Scholar 

  • Küçükaşik F, Kazak H, Güney D, Finore I, Poli A, Yenigün O, Nicolaus B, Toksoy EO (2011) Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol 89:1729–1740

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Satyanarayana T (2014) Secretion of recombinant thermo-alkali-stable endoxylanase of polyextremophilic Bacillus halodurans TSEV1 and its utility in generating xylooligosaccharides from renewable agro-residues. Process Biochem 49(11):1875–1883

    Article  CAS  Google Scholar 

  • Kumar S, Kumar P, Satyanarayana T (2007) Production of raw starch-saccharifying thermostable and neutral glucoamylase by the thermophilic mold thermomucor indicae-seudaticae in submerged fermentation. Appl Biochem Biotechnol 142:221–230

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspective. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155(4):283–289

    Article  CAS  PubMed  Google Scholar 

  • Lama L, Tramice A, Finore I, Anzelmo G, Calandrelli V, Pagnotta E, Tommonaro G, Poli A, Di Donato P, Nicolaus B, Fagnano M, Mori M, Impagliazzo A, Trincone A (2014) Degradative actions of microbial xylanolytic activities on hemicelluloses from rhizome of Arundo donax. AMB Expr 4:55–64

    Article  CAS  Google Scholar 

  • Lawther JM, Sun RC, Banks WB (1996) Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicelluloses. J Appl Polym Sci 60(11):1827–1837

    Article  CAS  Google Scholar 

  • Lee JW, Park JY, Kwon M, Choi IG (2009) Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J Biosci Bioeng 107(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang WW, Yang MM, Chen YL (2000) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201

    Article  CAS  Google Scholar 

  • Li W, Huan X, Zhou Y, Ma Q, Chen Y (2009) Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochem Biophys Res Commun 383:397–400

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Sun SN, Zhou X, Peng F, Sun RC (2015) Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment. Carbohydr Polym 123:17–26

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Xue Y, Fioroni M, Rodriguez-Ropero F, Zhou C, Schwaneberg U, Ma Y (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–326

    Article  CAS  PubMed  Google Scholar 

  • Lina L, Ping Z, Yaqi C, Mou S (2006) High-performance anion exchange chromatography with pulsed amperometric detection for simultaneous determination of monosaccharides and uronic acids. Chin J Anal Chem 34(10):1371–1374

    Article  Google Scholar 

  • Lindenmuth BE, McDonald KA (2011) Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris. Protein Expr Purif 77:153–158

    Article  CAS  PubMed  Google Scholar 

  • Lo YC, Huang CY, Cheng CL, Lin CY, Chang JS (2011) Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. Bioresour Technol 102:8384–8392

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  PubMed  Google Scholar 

  • Maalej I, Belhaj I, Masmoudi NF, Belghith H (2009) Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization. Appl Biochem Biotechnol 158:200–212

    Article  CAS  PubMed  Google Scholar 

  • Mastascusa V, Romano I, Di Donato P, Poli A, Della Corte V, Rotundi A, Bussoletti E, Quarto M, Pugliese MG, Nicolaus B (2014) Extremophiles survival to simulated space conditions: an astrobiology model study. Orig Life Evol Biosph 44(3):231–237

    Article  CAS  PubMed  Google Scholar 

  • Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210

    Article  CAS  PubMed  Google Scholar 

  • Nawirska A, Kwasniewska M (2005) Dietary fibre fractions from fruit and vegetable processing waste. Food Chem 91:221–225

    Article  CAS  Google Scholar 

  • Ng IS, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho TH, Tong CG (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435

    Article  CAS  PubMed  Google Scholar 

  • Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Nwodo UU, Green E, Okoh AI (2012) Review bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13(11):14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochs M, Muzard M, Plantier-Royon R, Boris E, Rémond C (2011) Enzymatic synthesis of alkyl β-d-xylosides and oligoxylosides from xylans and from hydrothermally pretreated wheat bran. Green Chem 13(9):2380–2388

    Article  CAS  Google Scholar 

  • Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Organic solvent-tolerant bacterium which secretes an organic solvent-stableproteolytic enzyme. Appl Environ Microbiol 61:4258–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  • Pastell H, Tuomainen P, Virkki L, Tenkanen M (2008) Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res 343(18):3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Paulová L, Patáková P, Branská B, Rychtera M, Melzoch K (2014) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.12.002

    PubMed  Google Scholar 

  • Piller K, Daniel RM, Petach HH (1996) Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130 degrees C. Biochim Biophys Acta 1292(1):197–205

    Article  PubMed  Google Scholar 

  • Podkaminer KK, Shao X, Hogsett DA, Lynd LR (2011) Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol Bioeng 108:1268–1278

    Article  CAS  PubMed  Google Scholar 

  • Polizeli ML, Rizzatti R, Monti HF, Terenzi JA, Jorge JA, Amorim DSJ (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y (2009) Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular beta-glucosidase I. Biosci Biotechnol Biochem 73:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Rakotoarivonina H, Hermant B, Monthe N, Rémond C (2012) The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 11:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM, Hughes SR, Apel WA, Bang SS, Dixon DJ, Sani RK (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 36:585–598

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2011) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806

    Article  CAS  Google Scholar 

  • Reis A, Pinto P, Evtuguin DV, Neto CP, Domingues P, Ferrer-Correia AJ, Domingues MRM (2005) Electrospray tandem mass spectrometry of underivatised acetylated xylo-oligosaccharides. Rapid Commun Mass Spectrom 19(23):3589–3599

    Article  CAS  PubMed  Google Scholar 

  • Rhee SK, Song KB, Kim CH, Park BS, Jang EK, Jang KH (2005) Levan. Biopolymers 5. doi:10.1002/3527600035.bpol5014

  • Robert P, Marquis M, Barron C, Guillon F, Saulnier L (2005) FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J Agric Food Chem 53(18):7014–7018

    Article  CAS  PubMed  Google Scholar 

  • Romaniec M, Fauth U, Kobayashi T, Huskisson N, Barker P, Demain A (1992) Purification and characterization of a new endoglucanase from Clostridium thermocellum. Biochem J 283:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose DJ, Inglett GE, Liu SX (2010) Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. J Sci Food Agric 90:915–924

    CAS  PubMed  Google Scholar 

  • Saleem M, Aslam F, Akhtar MS, Tariq M, Rajoka MI (2011) Characterization of a thermostable and alkaline xylanase from Bacillus sp. and its bleaching impact on wheat straw pulp. World J Microbiol Biotechnol 28(2):513–522

    Article  PubMed  CAS  Google Scholar 

  • Samanta AK, Jayapal N, Kolte AP, Senani S, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vazquez SA, Hailes HC, Evans JRG (2013) Hydrophobic polymers from food waste: resources and synthesis. Polym Rev 53:627–694

    Article  CAS  Google Scholar 

  • Sandoval NR, Kim JY, Glebes TY, Reeder PJ, Aucoin HR, Warner JR et al (2012) Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci U S A 109:10540–10545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapre MP, Jha H, Patil MB (2005) Purification and characterization of a thermoalkalophilic xylanase from Bacillus sp. World J Microbiol Biotechnol 21:649–654

    Article  CAS  Google Scholar 

  • Schiraldi C, Martino A, Acone M, Di Lernia I, Di Lazzaro A, Marulli F, Generoso M, Carteni M, De Rosa M (2000) Effective production of a thermostable alpha-glucosidase from Sulfolobus solfataricus in Escherichia coli exploiting a microfiltration bioreactor. Biotechnol Bioeng 70(6):670–676

    Article  CAS  PubMed  Google Scholar 

  • Sedlmeyer FB (2011) Xylan as by-product of biorefineries: characteristics and potential use for food applications. Food Hydrocoll 25(8):1891–1898

    Article  CAS  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Anton van Leeuw 81(1–4):73–83

    Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105:13769–13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastav A, Kim HY, Kim YR (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int 581684. doi:10.1155/2013/581684

    Google Scholar 

  • Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16

    Article  CAS  PubMed  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-amylases from microbial sources – an overview on recent developments. Food Technol Biotechnol 44:173–184

    CAS  Google Scholar 

  • Sriyapai T, Somyoonsap P, Matsui K, Kawai F, Chansiri K (2011) Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng 111:528–536

    Article  CAS  PubMed  Google Scholar 

  • Studholme DJ (2015) Some (bacilli) like it hot: genomics of Geobacillus species. Microb Biotechnol 8(1):40–48

    Article  PubMed  Google Scholar 

  • Subba MVSST, Muralikrishna G (2004) Structural analysis of arabinoxylans isolated from native and malted finger millet (Eleusine coracana, ragi). Carbohydr Res 339(14):2457–2463

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun RC, Lawther JM, Banks WB (1996) Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr Polym 29(4):325–331

    Article  CAS  Google Scholar 

  • Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56(2):195–204

    Article  CAS  Google Scholar 

  • Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agric Food Chem 53(4):860–870

    Article  CAS  PubMed  Google Scholar 

  • Sunna A, Moracci M, Rossi M, Antranikian G (1997) Glycosyl hydrolases from hyperthermophiles. Extremophiles 1:2–13

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • Tai SK, Lin HP, Kuo J, Liu JK (2004) Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater. Extremophiles 8:345–349

    Article  CAS  PubMed  Google Scholar 

  • Tommonaro G, Poli A, De Rosa S, Nicolaus B (2008) Tomato derived polysaccharides for biotechnological applications: chemical and biological approaches. Molecules 13(6):1384–1398

    Article  CAS  PubMed  Google Scholar 

  • Tramice A, Arena A, De Gregorio A, Ottanà R, Maccari R, Pavone B, Arena N, Innello D, Vigorita MG, Trincone A (2008) Facile biocatalytic access to 9-fluorenyl methyl polyglycosides: evaluation of antiviral activity on immunocompetent cells. ChemMedChem 3(9):1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Tramice A, Melck D, Virno A, Randazzo A, Motta A, Trincone A (2009) Enzymatic synthesis and 3-D structure of anti-proliferative acidic (MeGlcA) xylotetrasaccharide. J Mol Catal B Enzym 61(3–4):129–135

    Article  CAS  Google Scholar 

  • Van TT, Ryu SI, Lee KJ, Kim EJ, Lee SB (2007) Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J Microbiol Biotechnol 17(5):792–799

    PubMed  Google Scholar 

  • VanFossen AL, Verhaart MR, Kengen SM, Kelly RM (2009) Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 75:7718–7724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vázquez MJ, Garrote G, Alonso JL, Domiguez H, Parajò JC (2005) Refining of autohydrolysis liquors for manufacturing xylo-oligosaccharides: evaluation of operational strategies. Bioresour Technol 96(8):889–896

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen MA, Beldman G, Voragen AGJ (1995) The selective extraction of glucuronoarabinoxylans from Sorghum endosperm cell walls using barium and potassium hydroxide solutions. J Cereal Sci 21(3):271–282

    Article  CAS  Google Scholar 

  • Wang TH, Lu S (2013) Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food Chem 138(2–3):1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Bai Y, Yang P, Shi P, Luo H, Meng K, Huang H, Yin J, Yao B (2010) A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 26:917–924

    Article  CAS  Google Scholar 

  • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmgam KT, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A 110:4021–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Xiangyuan H, Shuzheng Z, Shoujun Y (2001) Cloning and expression of thermostable beta-glycosidase gene from Thermus nonproteolyticus HG102 and characterization of recombinant enzyme. Appl Biochem Biotechnol 94:243–255

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Osei-Prempeh G, Lema C, Devis Oldham E, Aguilera RJ, Parkin S, Rankin SE, Knutson BL, Lehmler HJ (2012) Synthesis, thermal properties and cytotoxicity evaluation of hydrocarbon and fluorocarbon alkyl-β-D xylopyranoside surfactants. Carbohydr Res 349:12–23

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, Lee HS, Park CS, Kim YR, Moon TW, Park KH (2004) Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an alpha-amylase and a cyclodextrin-hydrolyzing enzyme. Appl Environ Microbiol 70(10):5988–5995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl Environ Microbiol 75:4762–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37:1923–1929

    Article  CAS  PubMed  Google Scholar 

  • Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(6):11–618

    Google Scholar 

  • Zhang Y-HP, Ding SY, Mielenz JR, Cui J-B, Elander RT, Laser M, Himmel ME, McMillan JR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Siika-Aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhou J, Wang Y-H, Chua J, Luoa L-Z, Zhuanga Y-P, Zhanga S-L (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 100:819–825

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wu Y, Yu Z, Zhang X, Li H, Gao M (2006) The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour Technol 97(15):1964–1968

    Article  CAS  PubMed  Google Scholar 

  • Zverlov VV, Schantz N, Schmitt-Kopplin P, Schwarz WH (2005) Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology 151:3395–3401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the project PON03PE_00107_1 BioPoliS “Sviluppo di tecnologie verdi per la produzione di BIOchemicals per la sintesi e l’applicazione industriale di materiali POLImerici a partire da biomasse agricole ottenute da sistemi colturali Sostenibili nella Regione Campania”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Nicolaus .

Editor information

Editors and Affiliations

Ethics declarations

Annarita Poli, Ilaria Finore, Annabella Tramice, Paola Di Donato, Barbara Nicolaus, and Licia Lama declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poli, A., Finore, I., Tramice, A., Di Donato, P., Nicolaus, B., Lama, L. (2016). Technical Developments for Vegetable Waste Biomass Degradation by Thermophiles. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_19

Download citation

Publish with us

Policies and ethics