Skip to main content
Log in

Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aduseopoku J, Mitchell WJ (1988) Diauxic growth of Clostridium thermosaccharolyticum on glucose and xylose. FEMS Microbiol Lett 50:45–49

    Article  CAS  Google Scholar 

  • Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113

    Article  CAS  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66

    Article  CAS  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  • Benbassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria—metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199

    Article  CAS  Google Scholar 

  • Bollok M, Reczey K, Zacchi G (2000) Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Appl Biochem Biotechnol 84–6:69–80

    Article  Google Scholar 

  • Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  CAS  PubMed  Google Scholar 

  • Bringermeyer S, Schimz KL, Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis—isolation and partial characterization. Arch Microbiol 146:105–110

    Article  CAS  Google Scholar 

  • Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary alcohol dehydrogenase (2o Adh) as a bifunctional alcohol dehydrogenase acetyl-CoA reductive thioesterase. Biochem J 302:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carere CR, Kalia V, Sparling R, Cicek N, Levin DB (2008) Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Indian J Microbiol 48:252–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreira LH, Ljungdahl LG (1983) High ethanol producing derivatives of Thermoanaerobacter ethanolicus. Abstr Annu Meet Am Soc Microbiol 83:O4

    Google Scholar 

  • Cayol JL, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD, Garcia JL (1995) Description of Thermoanaerobacter brockii subsp. Lactiethylicus subsp. nov, isolated from a deep subsurface French oil-well, a proposal to reclassify Thermoanaerobacter finii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789

    Article  CAS  PubMed  Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234

    CAS  Google Scholar 

  • Cook GM, Janssen PH, Morgan HW (1993) Uncoupler resistant glucose uptake by the thermophilic glycolytic anaerobe Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum). Appl Environ Microbiol 59:2984–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook GM, Janssen PH, Russell JB, Morgan HW (1994) Dual mechanisms of xylose uptake in the thermophilic bacterium Thermoanaerobacter thermohydrosulfuricus. FEMS Microbiol Lett 116:257–262

    Article  CAS  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai SG, Guerinot ML, Lynd LR (2004) Cloning of l-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 65:600–605

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y (2003a) Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol 185:3042–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2003b) Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J Bacteriol 185:5109–5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erbeznik M, Dawson KA, Strobel HJ (1998a) Cloning and characterization of transcription of the xylAB operon in Thermoanaerobacter ethanolicus. J Bacteriol 180:1103–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erbeznik M, Ray M, Dawson KA, Strobel HJ (1998b) Xylose transport by the anaerobic thermophile Thermoanaerobacter ethanolicus and the characterization of a d-xylose-binding protein. Curr Microbiol 37:295–300

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New York

    Book  Google Scholar 

  • Freier D, Mothershed CP, Wiegel J (1988) Characterization of Clostridium thermocellum Jw20. Appl Environ Microbiol 54:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68

    Article  CAS  PubMed  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2007) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2:364–377

    CAS  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  CAS  PubMed  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Hartley BS, Shama G (1987) Novel ethanol fermentations fromsugarcane and straw. Phil Trans R Soc Lond A 321:555–568

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1982) Ethanol induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim Biophys Acta 693:195–204

    Article  CAS  PubMed  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1985) 31P NMR studies of Clostridium thermocellum—mechanism of end product inhibition by ethanol. J Biol Chem 260:7442–7451

    Article  CAS  PubMed  Google Scholar 

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214

    Article  CAS  PubMed  Google Scholar 

  • Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261

    CAS  PubMed  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  PubMed  Google Scholar 

  • Jones CR, Ray M, Dawson KA, Strobel HJ (2000) High affinity maltose binding and transport by the thermophilic anaerobe Thermoanaerobacter ethanolicus 39E. Appl Environ Microbiol 66:995–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungerma K, Thauer RK, Leimenst G, Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta 305:268–280

    Article  Google Scholar 

  • Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, Borovok I, Lamed R (2010) The unique set of putative membrane-associated anti-Sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 308:84–93

    Article  CAS  PubMed  Google Scholar 

  • Khan AW, Asther M, Giuliano C (1984) Utilization of steam decompressed and explosion decompressed aspen wood by some anaerobes. J Biosci Bioeng 62:335–339

    CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  • Kormelink FJM, Voragen AGJ (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695

    Article  CAS  Google Scholar 

  • Krishna SH, Reddy TJ, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77:193–196

    Article  CAS  Google Scholar 

  • Lamed R, Zeikus JG (1980a) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed R, Zeikus JG (1980b) Ethanol production by thermophilic bacteria—relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144:569–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp nov, an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119

    Article  CAS  PubMed  Google Scholar 

  • Lee YE, Jain MK, Lee CY, Lowe SE, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes—description of Thermoanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoanaerobacterium saccharolyticum gen-nov, sp-nov—reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb-nov, Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaerobacter thermohydrosulfuricus comb-nov, respectively—and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51

    Article  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  PubMed  Google Scholar 

  • Liang CN, Xue YF, Fioroni M, Rodriguez-Ropero F, Zhou C, Schwaneberg U, Ma YH (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–326

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  PubMed  Google Scholar 

  • Lovitt RW, Longin R, Zeikus JG (1984) Ethanol production by thermophilic bacteria—physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl Environ Microbiol 48:171–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovitt RW, Kim BH, Shen G-J, Zeikus JG (1988a) Solvent production by microorganisms. Crit Rev Biotechnol 7:107–186

    Article  CAS  Google Scholar 

  • Lovitt RW, Shen GJ, Zeikus JG (1988b) Ethanol production by thermophilic bacteria—biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  • Lynd LR, Ahn HJ, Anderson G, Hill P, Kersey DS, Klapatch T (1991a) Thermophilic ethanol production—investigation of ethanol yield and tolerance in continuous culture. Appl Biochem Biotechnol 28–9:549–570

    Article  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991b) Fuel rthanol from cellulosic biomass. Sci 251:1318–1323

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  PubMed  Google Scholar 

  • Lynd R, Currie D, Ciazza N, Herring C, Orem N (2008) Consolidated bioprocessing of cellulosic biomass to ethanol using thermophilic bacteria. Bioenergy. ASM, Washington, pp 55–73

    Google Scholar 

  • Mai V, Wiegel J (2000) Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl Environ Microbiol 66:4817–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148:163–167

    Article  CAS  Google Scholar 

  • Mcbee RH (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67:505–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen MJ, Ahring BK, Georgieva TI (2007) New Thermoanaerobacter mathranii strain selected from BG1 (DSMZ Accession number 18280) or mutants, useful for producing fermentation products, e.g. acid, alcohol, ketone, or hydrogen. BIOGASOL IPR, A. P. S. [WO2007134607-A1; EP2035543-A1; AU2007252104-A1; CA2652451-A1; CN101490242-A; IN200804701-P2; MX2008014733-A1; JP2009537156-W; US2010143988-A1; ZA200809878-A; MX280423-B]

  • Mishra S, Beguin P, Aubert JP (1991) Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J Bacteriol 173:80–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  PubMed  Google Scholar 

  • Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci U S A 107:18646–18651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp nov and Geobacillus uzenensis sp nov from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Intl J Syst Evol Microbiol 51:433–446

    Article  CAS  Google Scholar 

  • Ng TK, Zeikus JG (1982) Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J Bacteriol 150:1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng TK, Benbassat A, Zeikus JG (1981) Ethanol production by thermophilic bacteria—fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41:1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  CAS  PubMed  Google Scholar 

  • Nochur SV, Jacobson GR, Roberts MF, Demain AL (1992) Mode of sugar phosphorylation in Clostridium thermocellum. Appl Biochem Biotechnol 33:33–41

    Article  CAS  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Payton MA (1984) Production of ethanol by thermophilic bacteria. Trends Biotechnol 2:153–158

    Article  CAS  Google Scholar 

  • Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41:846–853

    Article  CAS  PubMed  Google Scholar 

  • Pronk JT, Steensma HY, vanDijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  PubMed  Google Scholar 

  • Rainey FA, Ward NL, Morgan HW, Toalster R, Stackebrandt E (1993) Phylogenetic analysis of anaerobic thermophilic bacteria—aid for their reclassification. J Bacteriol 175:4772–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv Appl Microbiol 31:1–60

    Article  CAS  Google Scholar 

  • Sabathe F, Belaich A, Soucaille P (2002) Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 217:15–22

    Article  CAS  PubMed  Google Scholar 

  • Saddler JN, Chan MKH (1984) Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermocellum in mono-culture and co-culture with Clostridium thermosaccharolyticum and Clostridium thermohydrosulphuricum. Can J Microbiol 30:212–220

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  • Sahm K, Matuschek M, Müller H, Mitchell WJ, Bahl H (1996) Molecular analysis of the amy gene locus of Thermoanaerobacterium thermosulfurigenes EM1 encoding starch-degrading enzymes and a binding protein-dependent maltose transport system. J Bacteriol 178:1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  • Shao WL, Obi SKC, Puls J, Wiegel J (1995) Purification and characterization of the alpha-glucuronidase from Thermoanaerobacterium Sp. Strain JW/Sl-YS485, an important enzyme for the utilization of substituted xylans. Appl Environ Microbiol 61:1077–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw AJ, Jenney FE, Adams MWW, Lynd LR (2008a) End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb Technol 42:453–458

    Article  CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008b) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105:13769–13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw AJ, Hogsett DA, Lynd LR (2009) Identification of the [FeFe]-Hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191:6457–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slapack GE, Russel I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC, Boca Raton

    Google Scholar 

  • Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Transact 32:283–289

    Article  CAS  Google Scholar 

  • Sorensen HR, Meyer AS, Pedersen S (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-l-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Biotechnol Bioeng 81:726–731

    Article  CAS  PubMed  Google Scholar 

  • Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  CAS  Google Scholar 

  • Sparling R, Islam R, Cicek N, Carere C, Chow H, Levin DB (2006) Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol 52:681–688

    Article  CAS  PubMed  Google Scholar 

  • Spindler DD, Wyman CE, Mohagheghi A, Grohmann K (1988) Thermo-tolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Biochem Biotechnol 17:279–293

    Article  CAS  Google Scholar 

  • Strobel HJ, Caldwell FC, Dawson KA (1995) Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI. Appl Environ Microbiol 61:4012–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, KishigamiT IK, Mizoguchi Y, Eto N, Takagi M, Abe S (1983) Bacillus thermoglucosidasius sp nov, a new species of obligately thermophilic bacilli. System Appl Microbiol 4:487–495

    Article  CAS  Google Scholar 

  • Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng 102:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Thomasser C, Danner H, Neureiter M, Saidi B, Braun R (2002) Thermophilic fermentation of hydrolysates—the effect of inhibitors on growth of thermophilic bacteria. Appl Biochem Biotechnol 98:765–773

    Article  PubMed  Google Scholar 

  • Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, Mccool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta Mutant. Appl Environ Microbiol 76:6591–6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70:883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyurin MV, Lynd LR, Wiegel J (2006) Gene transfer systems for obligately anaerobic thermophilic bacteria. Academic, London

    Book  Google Scholar 

  • Venkateswaran S, Demain AL (1986) The Clostridium thermocellumClostridium thermosaccharolyticum ethanol-production process—nutritional studies and scale-down. Chem Eng Com 45:53–60

    Article  CAS  Google Scholar 

  • Wang DIC, Avgerinos GC, Biocic I, Wang SD, Fang HY (1983) Ethanol from cellulosic biomass. Philos Trans R Soc Lond Ser B-Biol Sci 300:323–333

    CAS  Google Scholar 

  • Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen-nov, spec-nov, a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348

    Article  CAS  Google Scholar 

  • Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803

    Article  CAS  PubMed  Google Scholar 

  • Yao S (2008) Metabolic engineering of ethanol production in Thermoanaerobacter mathranii BG1. Ph.D. thesis, Risø Technical University of Denmark, Roskilde

  • Yao S, Mikkelsen MJ (2010a) Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 19:123–133

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Mikkelsen MJ (2010b) Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88:199–208

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG (1980) Chemical and fuel production by anaerobic bacteria. Ann Rev Microbiol 34:423–464

    Article  CAS  Google Scholar 

  • Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen-nov and sp-nov, a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48

    Article  CAS  Google Scholar 

  • Zeikus JG, Benbassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YHP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102:7321–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinghong Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, T., Yao, S. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 92, 13–27 (2011). https://doi.org/10.1007/s00253-011-3456-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3456-3

Keywords

Navigation