Skip to main content
Log in

Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3–12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39–0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68–76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Kim, S., & Dale, B. E. (2004). Biomass and Bioenergy, 26, 361–375.

    Article  Google Scholar 

  2. Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  3. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  4. Von Sivers, M., Zacchi, G., Olsson, L., & Hahn-Hägerdal, B. (1994). Biotechnology Progress, 10, 555–560.

    Article  Google Scholar 

  5. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology and Biotechnology, 63, 258–266.

    Article  CAS  Google Scholar 

  6. Aristidou, A., & Penttila, M. (2000). Current Opinion in Biotechnology, 11, 187–198.

    Article  CAS  Google Scholar 

  7. Saha, B. C. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  8. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34.

    Article  CAS  Google Scholar 

  9. Moniruzzaman, M., Dien, B. S., Skory, C. D., Chen, Z. D., Hespell, R. B., Ho, N. W. Y., et al. (1997). World Journal of Microbiology and Biotechnology, 13, 341–346.

    Article  CAS  Google Scholar 

  10. Klapatch, T. R., Hogsett, D. A. L., Baskaran, S., Pal, S., & Lynd, L. R. (1994). Applied Biochemistry and Biotechnology, 45–46, 209–223.

    Article  Google Scholar 

  11. Lynd, L. R. (1989). In Advances in biochemical engineering/biotechnology (vol 38, pp. 1–52). New York: Springer.

    Google Scholar 

  12. Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2007). Central European Journal of Biology, DOI 10.2478/s11535-007-0026-x.

  13. Sommer, P., Georgieva, T., & Ahring, B. K. (2004). Biochemical Society Transactions, 32, 283–289.

    Article  CAS  Google Scholar 

  14. Schmidt, J. E., & Ahring, B. K. (1999). Applied and Environmental Microbiology, 65, 1050–1054.

    CAS  Google Scholar 

  15. Desai, S. G., Guerinot, M. L., & Lynd, L. R. (2004). Applied Microbiology and Biotechnology, 65, 600–605.

    Article  CAS  Google Scholar 

  16. Lynd, L. R., Baskaran, S., & Casten, S. (2001). Biotechnology Progress, 17, 118–125.

    Article  CAS  Google Scholar 

  17. Hild, H. M., Stuckey, D. C., & Leak, D. J. (2003). Applied Microbiology and Biotechnology, 60, 679–686.

    CAS  Google Scholar 

  18. Hill, P. W., Klapatch, T. R., & Lynd, L. R. (1993). Biotechnology and Bioengineering, 42, 873–883.

    Article  CAS  Google Scholar 

  19. Lynd, L. R., Weimer, P. J., van Zyl W. H, & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  20. Georgieva, T., & Ahring, B. K. (2007). 29th Symposium on Biotechnology for Fuels and Chemicals, 51.

  21. Zaldivar, J., Roca, C., Le Foll, C., Hahn-Hägerdal, B., & Olsson, L. (2005). Bioresource Technology, 96, 1670–1676.

    Article  CAS  Google Scholar 

  22. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  23. Banat, I. M., Nigam, P., Singh, D., Marchant, R., & Mchale, A. P. (1998). World Journal of Microbiology and Biotechnology, 14, 809–821.

    Article  CAS  Google Scholar 

  24. Hörmeyer, H. F., Tailliez, P., Millet, J., Girard, H., Bonn, G., Bobleter, O., et al. (1988). Applied Microbiology and Biotechnology, 29, 528–535.

    Article  Google Scholar 

  25. Lynd, L. R., Grethlein, H. E., & Wolkin, R. H. (1989). Applied and Environmental Microbiology, 55, 3131–3139.

    CAS  Google Scholar 

  26. Kaur, H. R. P. (1989). Biological Wastes, 30, 301–308.

    Article  Google Scholar 

  27. Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22, 449–453.

    Article  CAS  Google Scholar 

  28. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40, 3693–3700.

    Article  CAS  Google Scholar 

  29. Nigam, J. N. (2001). Journal of Biotechnology, 87, 17–27.

    Article  CAS  Google Scholar 

  30. Amartey, S. A., Leung, P. C. J., Baghaei-Yazdi, N., Leak, D. J., & Hartley, B. S. (1999). Process Biochemistry, 34, 289–294.

    Article  CAS  Google Scholar 

  31. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000) Journal of Industrial Microbiology and Biotechnology, 25, 184–192.

    Article  CAS  Google Scholar 

  32. Felby, C., Klinke, H. B., Olsen, H. S., & Thomsen, A. B. (2003). Applications of Enzymes to Lignocellulosics, 855, 157–174.

    CAS  Google Scholar 

  33. Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). Applied Biochemistry and Biotechnology, 33, 67–81.

    Article  CAS  Google Scholar 

  34. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848.

    Article  CAS  Google Scholar 

  35. Szczodrak, J. (1988). Biotechnology and Bioengineering, 32, 771–776.

    Article  CAS  Google Scholar 

  36. Baskaran, S., Ahn, H. J., & Lynd, L. R. (1995). Biotechnology Progress, 11, 276–281.

    Article  CAS  Google Scholar 

  37. Burdette, D. S., Jung, S. H., Shen, G. J., Hollingsworth, R. I., & Zeikus, J. G. (2002). Applied and Environmental Microbiology, 68, 1914–1918.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Novozymes A/S for providing enzymes Celluclast and Novozyme 188. We further thank Thomas Andersen and Gitte Hinz-Berg from BioCentrum for excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte K. Ahring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, T.I., Mikkelsen, M.J. & Ahring, B.K. Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor. Appl Biochem Biotechnol 145, 99–110 (2008). https://doi.org/10.1007/s12010-007-8014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8014-1

Keywords

Navigation