Skip to main content
Log in

Re-Use of Vegetable Wastes as Cheap Substrates for Extremophile Biomass Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Wastes generated from industrial processing of tomato, lemon, carrot and fennel were used as sole carbon sources to support cheap microbial biomass production of thermophilic and halophilic microbial strains. The production of enzymes and biopolymers was also investigated.

Methods

The wastes were tested as growth media for extremophiles in two different modes: batch fermentation (BF) and dialysis fermentation (DF). Enzyme assays and NMR analysis of biopolymers were also performed.

Results

All the wastes afforded microbial biomass production yields comparable to those achieved using the standard complex media (CM). DF conditions allowed quantitative microbial biomass recovery and were used to study biomolecules production. Fennel and lemon wastes could provide appreciable enzyme production yields; carrot residues supported PHB production in comparable amounts with respect to the relative CM.

Conclusion

Vegetable wastes can be used as growth media for extremophile biomass fermentation thus providing a cheaper way to produce biotechnological extremozymes or biopolymers using zero cost feedstocks. Their use as fermentation media could also represent an alternative and low environmentally impacting method for vegetable wastes management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mahro, B., Timm, M.: Potential of biowaste from the food industry as a biomass resource. Eng. Life Sci. 7, 457–468 (2007)

    Article  Google Scholar 

  2. Arvanitoyannis, I.S., Varzakas, T.H.: Vegetable waste treatment: comparison and critical presentation of methodologies. Crit. Rev. Food Sci. Nutr. 48, 205–247 (2008)

    Article  Google Scholar 

  3. Mehta, V.J., Thumar, J.T., Singh, S.P.: Production of alkaline protease from an alkaliphilic actinomycete. Biores. Technol. 97, 1650–1654 (2006)

    Article  Google Scholar 

  4. Ikram-ul-Haq, Ashraf, H., Iqbal, J., Qadeer M.A.: Production of alpha amylase by Bacillus licheniformis using an economical medium. Biores. Technol. 87, 57–61 (2003)

  5. Ali, R., Zaidi, H.Z.: Utilisation of waste vegetables and fruits for production of fungal mass. Agr. Wastes 12, 251–260 (1985)

    Google Scholar 

  6. Rezazadeh Bari, M., Alizadeh, M., Farbeh, F.: Optimizing endopectinase production from date pomace by Aspergillus niger PC5 using response surface methodology. Food Bioprod. Process 88, 67–72 (2010)

    Article  Google Scholar 

  7. De Stefano, D., Tommonaro, G., Simeon, V., Poli, A., Nicolaus, B., Carnuccio, R.: A polysaccharide from tomato (Lycopersicon esculentum) peels affects NF-KB activation in LPS-stimulated J774 macrophages. J. Nat. Prod. 70, 1636–1639 (2007)

    Article  Google Scholar 

  8. Tommonaro, G., Poli, A., De Rosa, S., Nicolaus, B.: Tomato derived polysaccharides for biotechnological application: chemical and biological approaches. Molecules 13, 1384–1398 (2008)

    Article  Google Scholar 

  9. Romano, I., Lama, L., Schiano Moriello, V., Poli, A., Gambacorta, A., Nicolaus, B.: Isolation of a new thermohalophilic Thermus thermophilus strain from hot spring, able to grow on a renewable source of polysaccharide. Biotechnol. Lett. 26, 45–49 (2004)

    Article  Google Scholar 

  10. Nicolaus, B., Schiano Moriello, V., Lama, L., Poli, A., Gambacorta, A.: Polysaccharides from extremophilic microorganisms. Orig. Life Evol. Biosph. 34(1–2), 159–169 (2004)

    Article  Google Scholar 

  11. Romano, I., Poli, A., Finore, I., Huertas, F.J., Gambacorta, A., Pelliccione, S., Nicolaus, G., Lama, L., Nicolaus, B.: Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. IJSEM 57, 1499–1503 (2007)

    Google Scholar 

  12. Romano, I., Finore, I., Nicolaus, G., Huertas, F.J., Lama, L., Nicolaus, B., Poli, A.: Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from salt lake in Fuente de Piedra, southern Spain. IJSEM 58, 886–890 (2008)

    Google Scholar 

  13. Romano, I., Poli, A., Lama, L., Gambacorta, A., Nicolaus, B.: Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J. Gen. Appl. Microbiol. 51, 183–189 (2005)

    Article  Google Scholar 

  14. Romano, I., Nicolaus, B., Lama, L., Trincone, A., Gambacorta, A.: Gelrite plate technique for culturing Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Biotechnol. Tech. 5, 29–30 (1991)

    Article  Google Scholar 

  15. Strazzullo, G., Schiano Moriello, V., Poli, A., Immirzi, B., Amazio, P., Nicolaus, B.: Solid wastes of tomato-processing industry (Lycopersicon esculentum “Hybride Rome”) as renewable sources of polysaccharides. J. Food Technol. 1, 102–105 (2003)

    Google Scholar 

  16. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric methods for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  17. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  18. Singleton, V.L., Rossi Jr., J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  19. Motta, A., Romano, I., Gambacorta, A.: Rapid and sensitive method for osmolyte determination. J. Microbiol. Methods 58, 289–294 (2004)

    Article  Google Scholar 

  20. Lama, L., Nicolaus, B., Trincone, A., Morzillo, P., Calandrelli, V., Gambacorta, A.: Thermostable amylolytic activity from Sulfolobus solfataricus. Biotech. Forum Europe 8, 201–203 (1991)

    Google Scholar 

  21. Kimura, H., Oshura, T., Takeishi, M., Nagamura, S., Doi, Y.: Effective microbial production of poly(4- hydroxybutyrate) homopolymer by Ralstonia eutropha H16. Polym. Int. 48, 1073–1079 (1999)

    Article  Google Scholar 

  22. Nakamura, S., Doi, Y., Scandola, M.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25(17), 4237–4241 (1992)

    Article  Google Scholar 

  23. Giampietro, M., Ulgiati, S.: Integrated assessment of large scale biofuel production. CRC Crit. Rev. Plant Sci. 24, 365–384 (2005)

    Article  Google Scholar 

  24. Gray, K., Zhao, L., Emptage, M.: Bioethanol. Curr. Opin. Chem. Biol. 10, 141–146 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Italian Ministry of Foreign Affairs (MAE, Directorate General for Cultural Promotion and Co-operation) and Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annarita Poli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Donato, P., Fiorentino, G., Anzelmo, G. et al. Re-Use of Vegetable Wastes as Cheap Substrates for Extremophile Biomass Production. Waste Biomass Valor 2, 103–111 (2011). https://doi.org/10.1007/s12649-011-9062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9062-x

Keywords

Navigation