Skip to main content

Use of Agroindustrial Biomass for Biofuel and Enzyme Discovery and Production

  • Chapter
  • First Online:
Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery

Abstract

Biomass is all biologically produced matter and means a biological reservoir of energy. The list of biomass wastes is large, for example, agriculture, horticulture, forest residues, food processing, and municipal solid wastes, among others. Biomass is widely available; its use reduces the amount of wastes and the biofuels obtained from it are considered renewable energy. Crop cultivation activities (e.g., rice, banana, maize, and sugarcane) produce large quantities of agricultural wastes. These (lignocellulosic) materials are composed of cellulose, hemicellulose, and lignin, and cellulose is the most abundant organic polymer on Earth, but the conversion of lignocellulose into reducing sugars is more difficult than the conversion of starch. Microorganisms play an important role in the global carbon cycle, and microbial decomposers have been isolated from raw materials as reported in many publications. These microbes secrete, among other enzymes, ligninases, hemicellulases, and cellulases, which hydrolyze the polymers present in the agroindustrial wastes. The search for microbes with good performance on lignocellulosic materials is expanding to other niches and currently many extremophiles are under characterization. Microbial enzymes are produced by different approaches: solid state fermentation, liquid submerged fermentation, or by genetic engineering of the lignocellulolytic microorganism or by heterologous expression in model microorganisms. Biological treatment of lignocellulose improves the efficiency of hydrolysis, and compared to other pretreatments, it does not require handling chemical substances. Other challenges to overcome in biofuel production are the presence of inhibitors, mainly furan derivatives, which are generated during physical and chemical pretreatment of lignocellulosic biomass. Research is now focused on developing methods for detoxification and identification or the development of much more tolerant fermentative microbes. Current efforts are paying attention to the consolidation of processes for biofuel conversion in order to make them more efficient and economically feasible. This chapter reviews the state of the art for valorization of biomass to produce enzymes and biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ábrego, U., Chen, Z., & Wan, C. (2017). Consolidated bioprocessing Systems for Cellulosic Biofuel Production. In Y. Li & X. Ge (Eds.), Advances in bioenergy (pp. 143–182). Elsevier.

    Google Scholar 

  • Adapa, P. K., Tabil, L. G., & Schoenau, G. J. (2010). Pelleting characteristics of selected biomass with and without steam explosion pre-treatment. International Journal of Agricultural and Biological Engineering, 3(3), 62–79.

    CAS  Google Scholar 

  • Aguilar-Sánchez, P., Navarro-Pineda, F. S., Sacramento-Rivero, J. C., & Barahona-Pérez, L. F. (2018). Life-cycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico. Clean Technologies and Environmental, 20, 1685–1696.

    Google Scholar 

  • Ali, S. S., Nugent, B., Mullins, E., & Doohan, F. M. (2016). Fungal-mediated consolidated bioprocessing: The potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express, 6, 13.

    PubMed  PubMed Central  Google Scholar 

  • Alzagameem, A. E. L., Khaldi-Hansen, B., Kamm, B., & Schulze, M. (2018). Lignocellulosic biomass for energy, biofuels, biomaterials, and chemicals. In S. Vaz Jr. (Ed.), Biomass and green chemistry (pp. 95–132). Cham: Springer.

    Google Scholar 

  • Anbu, P., Gopinath, S. C. B., Chaulagain, B. P., & Lakshmipriya, T. (2016). Microbial enzymes and their applications in industries and medicine. BioMed Research International, 2017, 1–7.

    Google Scholar 

  • Apolinar-Hernández, M. M., Peña-Ramírez, Y. J., Pérez-Rueda, E., Canto-Canché, B. B., De Los Santos-Briones, C., & O’Connor-Sánchez, A. (2016). Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water. Gene, 593(1), 154–161.

    PubMed  Google Scholar 

  • Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.

    CAS  Google Scholar 

  • Arotupin, D. J. (2007). Evaluation of microorganisms from cassava wastewater for production of amylase and cellulase. Research Journal of Microbiology, 2(5), 475–480.

    CAS  Google Scholar 

  • Bailly, J., Fraissinet-Tachet, L., Verner, M. C., Debaud, J. C., Lemaire, M., Wésolowski-Louvel, M., & Marmeisse, R. (2007). Soil eukaryotic functional diversity, a metatranscriptomic approach. The ISME Journal, 1(7), 632–642.

    CAS  PubMed  Google Scholar 

  • Barriuso, J., & Martínez, M. J. (2015). In silico metagenomes mining to discover novel esterases with industrial application by sequential search strategies. Journal of Microbiology and Biotechnology, 25(5), 732–737.

    CAS  PubMed  Google Scholar 

  • Batista-García, R. A., Sánchez-Carbente, M. D., Talia, P., Jackson, S. A., Nail, D. O., Dobson, A. D. W., & Folch-Mallol, J. L. (2016). From lignocellulosic metagenomes to lignocellulolytic genes: Trends, challenges and future prospects. Biofuels, Bioproducts and Biorefining, 10, 864–882.

    Google Scholar 

  • Bayer, E. A., Lamed, R., White, B. A., & Flint, H. J. (2008). From cellulosomes to cellulosomics. Chemical Record, 8(6), 364–377.

    CAS  PubMed  Google Scholar 

  • Benedetti, M., Locci, F., Gramegna, G., Sestil, F., & Savatin, D. V. (2019). Green production and biotechnological applications of cell wall lytic enzymes. Applied Sciences, 9(23), 5012.

    CAS  Google Scholar 

  • Berini, F., Casciello, C., Marcone, G. L., & Marinelli, F. (2017). Metagenomics: Novel enzymes from non-culturable microbes. FEMS Microbiology Letters, 364(21). https://doi.org/10.1093/femsle/fnx211.

  • Bernstein, H. C., & Carlson, R. P. (2012). Microbial consortia engineering for cellular factories: in vitro to in silico systems. Computational and Structural Biotechnology Journal, 3, e201210017.

    PubMed  PubMed Central  Google Scholar 

  • Bhatia, L., Johri, S., & Ahmad, R. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: A review. AMB Express, 2, 65.

    PubMed  PubMed Central  Google Scholar 

  • Bhatia, S. K., Joo, H. S., & Yang, Y. H. (2018). Biowaste-to-bioenergy using biological methods – A mini review. Energy Conversion and Management, 177, 640–660.

    CAS  Google Scholar 

  • Blanch, H. W. (2012). Bioprocessing for biofuels. Current Opinion in Biotechnology, 23, 390–395.

    CAS  PubMed  Google Scholar 

  • Blank, C., Easterly, C., Gruening, B., Johnson, J., Kolmeder, C. A., Kumar, P., May, D., Mehta, S., Mesuere, B., Brown, Z., Elias, J. E., Hervey, W. J., McGowan, T., Muth, T., Nunn, B., Rudney, J., Tanca, A., Griffin, T. J., & Jagtap, P. D. (2018). Disseminating metaproteomic informatics capabilities and knowledge using the GALAXY-P framework. Proteomes, 6(1), 7.

    PubMed Central  Google Scholar 

  • Borchert, E., Selvin, J., Kiran, S. G., Jackson, S. A., O’Gara, F., & Dobson, A. D. W. (2017). A novel cold active esterase from a deep-sea sponge Stelletta normani metagenomic library. Frontiers in Marine Science, 4, 287.

    Google Scholar 

  • Canseco-Pérez, M. A., Castillo-Avila, G. M., Chi-Manzanero, B., Islas-Flores, I., Apolinar-Hernández, M. M., Rivera-Muñoz, G., Gamboa-Angulo, M., Sanchez-Teyer, F., Couoh-Uicab, Y., & Canto-Canché, B. (2018). Fungal screening on olive oil for extracellular triacylglycerol lipases: Selection of a Trichoderma harzianum strain and genome wide search for the genes. Genes (Basel), 9, 2. pii: E62.

    Google Scholar 

  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064.

    CAS  PubMed  Google Scholar 

  • Chiumenti, A., Borso, F., & dLimina, S. (2018). Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Management, 71, 704–710.

    CAS  PubMed  Google Scholar 

  • Chu, X., Wu, G., Wang, J., & Hu, Z. H. (2015). Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions. Environmental Science and Pollution Research International, 22(24), 20143–20153.

    Google Scholar 

  • Chundawat, S. P. S., Paavola, C. D., Raman, B., Nouailler, M., Chan, S. L., Mielenz, J. R., Receveur-Brechot, V., Trentdi, J. D., & Dalebc, B. E. (2016). Saccharification of thermochemically pretreated cellulosic biomass using native and engineered cellulosomal enzyme system. Reaction Chemistry & Engineering, 1, 616–628.

    CAS  Google Scholar 

  • Cirne, D., vdZee, F., Fernández-Polanco, M., & Fernández-Polanco, F. (2008). Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Reviews in Environmental Science and Biotechnology, 7, 93–105.

    CAS  Google Scholar 

  • Claassen, P. A. M., van-Lier, J. B., Lopez-Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., de Vries, S. S., & Weusthuis, R. A. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741–755.

    CAS  Google Scholar 

  • Cuervo-Fernandez, R., Ottoni, C. A., da Silva, E. S., Matsubara, R. M., Carter, J. M., Magossi, L. R., Wada, M. A., de Andrade Rodrigues, M. F., Maresma, B. G., & Maiorano, A. E. (2007). Screening of beta-fructofuranosidase-producing microorganisms and effect of pH and temperature on enzymatic rate. Applied Microbiology and Biotechnology, 75(1), 87–93.

    Google Scholar 

  • Cui, J., Mai, G., Wang, Z., Liu, Q., Zhou, Y., Ma, Y., & Liu, C. (2019). Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Frontiers in Microbiology, 10, 618.

    PubMed  PubMed Central  Google Scholar 

  • Culligan, E. P., Sleator, R. D., Marchesi, J. R., & Hill, C. (2014). Metagenomics and novel gene discovery: Promise and potential for novel therapeutics. Virulence, 5(3), 399–412.

    PubMed  Google Scholar 

  • da Silva, A. R. G., Ortega, C. E. T., & Rong, B. G. (2016). Effects of bioethanol pretreatments on the broth concentration and its impacts in the optimal design of product separation and purification processes. Computer Aided Chemical Engineering, 38, 583–588.

    Google Scholar 

  • Dabhi, B. K., Vyas, R. V., & Shelat, H. N. (2014). Use of banana waste for the production of cellulolytic enzymes under solid substrate fermentation using bacterial consortium. International Journal of Current Microbiology and Applied Sciences, 3, 337–346.

    CAS  Google Scholar 

  • Dahnum, D., Tasum, S. O., Triwahyuni, E., Nurdin, M., & Abimanyu, H. (2015). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia, 68, 107–116.

    CAS  Google Scholar 

  • Dalmaso, G. Z., Ferreira, D., & Vermelho, A. B. (2015). Marine extremophiles: A source of hydrolases for biotechnological applications. Marine Drugs, 13(4), 1925–1965.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damon, C., Lehembre, F., Oger-Desfeux, C., Luis, P., Ranger, J., Fraissinet-Tachet, L., & Marmeisse, R. (2012). Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One, 7(1), e28967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dashtban, M. H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. International Journal of Biological Sciences, 5, 578–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dave, B. R., Sudhir, A. P., Pansuriya, M., Raykundaliya, D. P., & Subramanian, R. B. (2012). Utilization of Jatropha deoiled seed cake for production of cellulases under solid-state fermentation. Bioprocess and Biosystems Engineering, 35(8), 1343–1353.

    CAS  PubMed  Google Scholar 

  • de Lima, T. C. S., Grisi, B. M., & Bonato, M. C. M. (1999). Bacteria isolated from a sugarcane agroecosystem: Their potential production of polyhydroxyalcanoates and resistance to antibiotics. Revista de Microbiologia, 30, 214–224.

    Google Scholar 

  • de Souza, A. P., Grandis, A., Leite, D. C. C., & Buckeridge, M. S. (2014). Sugarcane as a bioenergy source: History, performance, and perspectives for second-generation bioethanol. Bioenergy Research, 7, 24–35.

    CAS  Google Scholar 

  • Demain, A. L., Newcomb, M., & Wu, J. H. D. (2005). Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 69, 124–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demirel, B., & Scherer, P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Reviews in Environmental Science and Biotechnology, 7, 173–190.

    CAS  Google Scholar 

  • Devarapalli, M., & Atiyeh, H. K. (2015). A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res J, 2, 268–280.

    CAS  Google Scholar 

  • Devi, M. C., & Kumar, M. S. (2012). Isolation and screening of lignocellulose hydrolytic saprophytic fungi from dairy manure soil. Annals of Biological Research, 3, 1145–1152.

    Google Scholar 

  • Doi, R. H., Kosugi, A., Murashima, K., Tamaru, Y., & Han, S. O. (2003). Cellulosomes from mesophilic bacteria. Journal of Bacteriology, 185(20), 5907–5914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Z. (2014). Consolidated bioprocessing for ethanol production. In N. Qureshi, D. B. Hodge, & A. Alain (Eds.), Biorefineries (pp. 141–160). Elsevier.

    Google Scholar 

  • Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.

    CAS  PubMed  Google Scholar 

  • Fu, S. F., Shi, X. S., Wang, F., Yuan, X. Z., & Guo, R. B. (2015). Comparison of thermophilic microaerobic and alkali pretreatment of sugarcane bagasse for anaerobic digestion. RSC Advances, 5, 63903–63908.

    Google Scholar 

  • Garg, R., Srivastava, R., Brahma, V., Verma, L., Karthikeyan, S., & Sahni, G. (2016). Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Scientific Reports, 6, 39634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldemberg, J., Teixeira Coelho, S., & Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. Bioenergy Policy, 36, 2086–2097.

    Google Scholar 

  • Gomes-Pepe, E. S., Machado Sierra, E. G., Pereira, M. R., Castellane, T. C., & Lemos, E. G. (2016). Bg10: A novel metagenomics alcohol-tolerant and glucose-stimulated GH1 β-glucosidase suitable for lactose-free milk preparation. PLoS One, 11(12), e0167932.

    PubMed  PubMed Central  Google Scholar 

  • Gonçalves de Siqueira, F., Gonçalves de Siqueira, L. G., Duque-Jaramillo, P. M., Luciano-Silveira, H., Andreaus, J., Aparecida-Couto, F., Batista, L. R., & Ferreira Fihlo, E. X. (2010). The potential of agro-industrial residues for production of holocellulase from filamentous fungi. International Biodeterioration & Biodegradation, 64, 20–26.

    Google Scholar 

  • Gronchi, N., Favaro, L., Cagnin, L., Brojanigo, S., Pizzocchero, V., Basaglia, M., & Casella, S. (2019). Novel yeast strains for the efficient saccharification and fermentation of starchy by-products to bioethanol. Energies, 12(4), 714.

    CAS  Google Scholar 

  • Gunnoo, M., Cazade, P. A., Galera-Prat, A., Nash, M. A., Czjzek, M., Cieplak, M., Alvarez, B., Aguilar, M., Karpol, A., Gaub, H., Carrión-Vázquez, M., Bayer, E. A., & Thompson, D. (2016). Nanoscale engineering of designer cellulosomes. Advanced Materials, 28(27), 5619–5647.

    CAS  PubMed  Google Scholar 

  • Haitjema, C. H., Gilmore, S. P., Henske, J. K., Solomon, K. V., de Groot, R., Kuo, A., Mondo, S. J., Salamov, A. A., LaButti, K., Zhao, Z., Chiniquy, J., Barry, K., Brewer, H. M., Purvine, S. O., Wright, A. T., Hainaut, M., Boxma, B., van Alen, T., Hackstein, J. H. P., Henrissat, B., Baker, S. E., Grigoriev, I. V., & O'Malley, M. A. (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2, 17087.

    CAS  PubMed  Google Scholar 

  • Hakawati, R., Smyth, B. M., McCullough, G., De Rosa, F., & Rooney, D. (2017). What is the most energy efficient route for biogas utilization: Heat, electricity or transport? Applied Energy, 206, 1076–1087.

    Google Scholar 

  • Hattori, T., & Morita, S. (2010). Energy crops for sustainable bioethanol production; which, where and how? Plant Production Science, 13, 221–234.

    Google Scholar 

  • Hyeon, J. E., Shin, S. K., & Han, S. O. (2016). Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnology Journal, 11(11), 1386–1396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn, A., Moraïs, S., Galanopoulou, A. P., Chung, D., Sarai, N. S., Hengge, N., Hatzinikolaou, D. G., Himmel, M. E., Bomble, Y. J., & Bayer, E. A. (2019). Creation of a functional hyperthermostable designer cellulosome. Biotechnology for Biofuels, 12, 44.

    PubMed  PubMed Central  Google Scholar 

  • Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2019). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90.

    CAS  Google Scholar 

  • Kantharaj, P., Boobalan, B., Sooriamuthu, S., & Ravikumar, M. (2017). Lignocellulose degrading enzymes from fungi and their industrial applications. International Journal of Current Research and Review, 9, 1–12.

    CAS  Google Scholar 

  • Kausar, H., Sariah, M., Mohd-Saud, H., Zahangir, A. M., & Ismail, M. R. (2010). Development of compatible lignocellulolytic fungal consortium for rapid composting of rice Straw. International Biodeterioration & Biodegradation, 64, 594–600.

    CAS  Google Scholar 

  • Kazemi Shariat Panahi, H., Dehhaghi, M., Kinder, J. E., & Ezeji, T. C. (2019). A review on green liquid fuels for the transportation sector: A prospect of microbial solutions to climate change. Biofuel Research Journal, (23), 995–1024.

    Google Scholar 

  • Kellner, H., Luis, P., Portetelle, D., & Vandenbol, M. (2011). Screening of a soil metatranscriptomic library by functional complementation of Saccharomyces cerevisiae mutants. Microbiological Research, 166(5), 360–368.

    CAS  PubMed  Google Scholar 

  • Kim, S. J., Hyeon, J. E., Jeon, S. D., Choi, G. W., & Han, S. O. (2014). Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzyme and Microbial Technology, 66, 67–73.

    CAS  PubMed  Google Scholar 

  • Ko, K. C., Lee, J. H., Han, Y., Choi, J. H., & Song, J. J. (2013). A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochemical and Biophysical Research Communications, 441(3), 567–572.

    CAS  PubMed  Google Scholar 

  • Koonin, S. E. (2006). Getting serious about biofuels. Science, 311(5760), 435.

    CAS  PubMed  Google Scholar 

  • Koutsandreas, T., Ladoukakis, E., Pilalis, E., Zarafeta, D., Kolisis, F. N., Skretas, G., & Chatziioannou, A. A. (2019). ANASTASIA: An automated metagenomic analysis pipeline for novel enzyme discovery exploiting next generation sequencing data. Frontiers in Genetics, 10, 469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., & Gupta, N. (2018). Potential of lignocellulosic materials for production of ethanol. In A. Kumar, S. Ogita, & Y. Y. Yau (Eds.), Biofuels: Greenhouse gas mitigation and global warming (pp. 271–290). New Delhi: Springer.

    Google Scholar 

  • Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877–891.

    CAS  Google Scholar 

  • Lavanya, D., Kulkarni, P., Dixit, M., Raavi, P. K., & Krishna, L. (2011). Sources of cellulose and their applications – A review. International Journal of Drug Formulation and Research, 2(6), 19–38.

    Google Scholar 

  • Leis, B., Held, C., Andreeßen, B., Liebl, W., Graubner, S., Schulte, L. P., Schwarz, W. H., & Zverlov, V. V. (2018). Optimizing the composition of a synthetic cellulosome complex for the hydrolysis of softwood pulp: Identification of the enzymatic core functions and biochemical complex characterization. Biotechnology for Biofuels, 11, 220.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zhang, R., Chen, C., et al. (2013). Biogas production from co-digestion of corn Stover and chicken manure under anaerobic wet, hemi-solid, and solid-state conditions. Bioresource Technology, 149, 406–412.

    CAS  PubMed  Google Scholar 

  • Li, Y., Xu, H., Hua, D., et al. (2020). Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources. Science of the Total Environment, 699(10), 134226.

    CAS  PubMed  Google Scholar 

  • Liu, F., Monroe, E., & Davis, R. (2018) Engineering microbial consortia for bioconversion of multisubstrate biomass streams to biofuels. In: Al Qubeissi M (Ed.) Biodiesel and Biofuels (pp 101–120). IntechOpen. https://doi.org/10.5772/intechopen.80534.

  • Lizardi-Jiménez, M. A., & Hernández-Martínez, R. (2017). Solid state fermentation (SSF): Diversity of applications to valorize waste and biomass. 3 Biotech, 7(1), 44.

    PubMed  PubMed Central  Google Scholar 

  • López-López, O., Cerdán, M. E., & González Siso, M. I. (2014). New extremophilic lipases and esterases from metagenomics. Current Protein & Peptide Science, 15(5), 445–455.

    Google Scholar 

  • López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 6, 25279.

    PubMed  PubMed Central  Google Scholar 

  • Luo, X. J., Yu, H. L., & Xu, J. H. (2012). Genomic data mining: An efficient way to find new and better enzymes. Enzyme Engineering, 1, 104.

    Google Scholar 

  • Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16, 577–583.

    CAS  PubMed  Google Scholar 

  • Madadi, M., & Abbas, A. (2017). Lignin degradation by fungal pretreatment: A review. Journal of Plant Pathology and Microbiology, 8, 398.

    Google Scholar 

  • Maity Sunil, K. (2015). Opportunities, recent trends and challenges of integrated biorefinery. Renewable and Sustainable Energy Reviews, 43, 1427–1445.

    Google Scholar 

  • Mandic, M., Djokic, L., Nikolaivits, E., Prodanovic, R., O’Connor, K., Jeremic, S., Topakas, E., & Nikodinovic-Runic, J. (2019). Identification and characterization of new laccase biocatalysts from Pseudomonas species suitable for degradation of synthetic textile dyes. Catalysts, 9, 629.

    CAS  Google Scholar 

  • Martínez, A., Speranza, M., Ruiz-Dueñas, F., et al. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.

    PubMed  Google Scholar 

  • Martínez-Gutiérrez, E. (2018). Biogas production from different lignocellulosic biomass sources: Advances and perspectives. 3 Biotech, 8(233), 2–18.

    Google Scholar 

  • Mbaneme-Smith, V., & Chinn, M. S. (2015). Consolidated bioprocessing for biofuel production: Recent advances. Energy and Emission Control Technologies, 3, 23.

    Google Scholar 

  • McCarty, P. L., & Smith, D. P. (1986). Anaerobic wastewater treatment. Environmental Science & Technology, 20, 1200–1206.

    CAS  Google Scholar 

  • Medeiros, R. G., Soffner, M. L. A. P., Thome, J. A., Cacais, A. O. G., Estelles, R. S., Salles, B. C., Ferreira, H. M., Lucena Neto, S. A., Silva, F. G. J., & Filho, E. X. (2000). The production of hemicellulases by aerobic fungi on medium containing residues of banana plant as substrate. Biotechnology Progress, 16, 522–524.

    CAS  PubMed  Google Scholar 

  • Mena-Espino, X., Barahona-Pérez, F., Alzate-Gaviria, L., Rodríguez-Vázquez, R., Simá, M. T., Domínguez-Maldonado, J., & Canto-Canché, B. B. (2011). Saccharification with Phanerochaete chrysosporium and Pleurotus ostreatus enzymatic extracts of pretreated banana waste. African Journal of Biotechnology, 10, 3824–3834.

    CAS  Google Scholar 

  • Monlau, F., Barakat, A., Steyer, J., & Carrere, H. (2012). Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresource Technology, 120, 241–247.

    CAS  PubMed  Google Scholar 

  • Moore, P. H. (1995). Temporal and spatial regulation of sucrose metabolism in the sugarcane stem. Australian Journal of Plant Physiology, 22, 661–679.

    CAS  Google Scholar 

  • Moosbrugger, R. E., Wentzel, M. C., Ekama, G. A., & Marais, G. A. (1993). Weak acid/bases and pH control in anaerobic systems – A review. Water SA, 19, 1–10.

    CAS  Google Scholar 

  • Moraïs, S., Morag, E., Barak, Y., Goldman, D., Hadar, Y., Lamed, R., Shoham, Y., Wilson, D. B., & Bayer, E. A. (2012). Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio, 3(6), 508–512., e00508-12. https://doi.org/10.1128/mBio.00508-12.

    Article  CAS  Google Scholar 

  • Moreno, A. D., Alvira, P., Ibarra, D., & Tomás-Pejó, E. (2017). Production of ethanol from lignocellulosic biomass. In Z. Fang, J. R. Smith, & X. Qi (Eds.), Production of platform chemicals from sustainable resources. Biofuels and biorefineries (pp. 375–410). Singapore: Springer.

    Google Scholar 

  • Mussatto, S. I., & Teixeira, J. A. (2010). Lignocellulose as raw material in fermentation processes. In A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (Vol. 2, pp. 897–907). Spain: FORMATEX Research Center.

    Google Scholar 

  • Nagarajan, D., Lee, D. J., & Chang, J. S. (2019). Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. International Journal of Hydrogen Energy, 44, 14362–14379.

    CAS  Google Scholar 

  • Ngara, T. R., & Zhang, H. (2018). Recent advances in function-based metagenomic screening. Genomics, Proteomics & Bioinformatics, 16(6), 405–415.

    Google Scholar 

  • Nie, Y. Q., Liu, H., Du, G. C., & Chen, J. (2007). Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process. Process Biochemistry, 42, 599–605.

    CAS  Google Scholar 

  • Obeng, E. M., Adam, S. N. N., Budiman, C., Ongkudon, C. M., Maas, R., & Jose, J. (2017). Lignocellulases: A review of emerging and developing enzymes, systems, and practices. Bioresources and Bioprocessing, 4, 16.

    Google Scholar 

  • Okamoto, K., Uchii, A., Kanawaku, R., & Yanase, H. (2014). Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springerplus, 3, 121.

    PubMed  PubMed Central  Google Scholar 

  • Olguin-Maciel, E., Larqué-Saavedra, A., Lappe-Oliveras, P. E., Barahona-Pérez, L. F., Alzate-Gaviria, L., Chablé-Villacis, R., Domínguez-Maldonado, J., Pacheco-Catalán, D., Ruíz, H. A., & Tapia-Tussell, R. (2019). Consolidated bioprocess for bioethanol production from raw flour of Brosimum alicastrum seeds using the native strain of Trametes hirsuta Bm-2. Microorganisms, 7, 483.

    CAS  PubMed Central  Google Scholar 

  • Olson, D. G., McBride, J. E., Shaw, A. J., & Lynd, L. R. (2012). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23, 396–405.

    CAS  PubMed  Google Scholar 

  • Oude lferink, S. J. W. H., Vorstman, W. J. C., Sopjes, A., & Stams, A. J. M. (1998). Characterization of the sulfate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewater. FEMS Microbiology Ecology, 27, 185–194.

    Google Scholar 

  • Pagès, S., Bélaïch, A., Bélaïch, J. P., Morag, E., Lamed, R., Shoham, Y., & Bayer, E. A. (1997). Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain. Proteins, 29(4), 517–527.

    PubMed  Google Scholar 

  • Parisutham, V., Kim, T. H., & Lee, S. K. (2014). Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresource Technology, 161, 431–440.

    CAS  PubMed  Google Scholar 

  • Paritosh, K., & Vivekanand, V. (2019). Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production. Bioresource Technology, 289, 121712.

    PubMed  Google Scholar 

  • Park, S. H., Ong, R. G., & Sticklen, M. (2016). Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. Plant Biotechnology Journal, 14(6), 1329–1344.

    CAS  PubMed  Google Scholar 

  • Parker, K. N., Chhabra, S. R., Lam, D., Callen, W., Duffaud, G. D., Snead, M. A., Short, J. M., Mathur, E. J., & Kelly, R. M. (2001). Galactomannanases Man2 and Man5 from Thermotoga species: Growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnology and Bioengineering, 75(3), 322–333.

    CAS  PubMed  Google Scholar 

  • Pipatmanomai, S., Kaewluan, S., & Vitidsant, T. (2009). Economic assessment of biogas-to-electricity system with H2S removal by activated carbon in small farm. Applied Energy, 86, 669–674.

    CAS  Google Scholar 

  • Ravindran, V., Morel, P. C., Partridge, G. G., Hruby, M., & Sands, J. S. (2006). Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poultry Science, 85(1), 82–89.

    CAS  PubMed  Google Scholar 

  • Ren, Z., You, W., Wu, S., Poetsch, A., & Xu, C. (2019). Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnology for Biofuels, 12, 183.

    PubMed  PubMed Central  Google Scholar 

  • Resch, M. G., Donohoe, B. S., Decker, S. R., Baker, J. O., Bayer, E. A., Beckham, G. T., & Himmel, M. E. (2013). Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy & Environmental Science, 6, 1858–1867.

    CAS  Google Scholar 

  • Rocamora, I., Wagland, S. T., Villa, R., et al. (2019). Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresource Technology, 229, 122681.

    Google Scholar 

  • Rößiger, B., Unkelbach, G., & Pufky-Heinrich, D. (2018). Base-Catalyzed Depolymerization of Lignin: History, Challenges and Perspectives, Lignin - Trends and Applications, Matheus Poletto, IntechOpen, https://doi.org/10.5772/intechopen.72964. Available from: https://www.intechopen.com/books/lignin-trends-and-applications/base-catalyzed-depolymerization-of-lignin-history-challenges-and-perspectives

  • Rotaru, A. E., Shrestha, P. M., Liu, F., Markovaite, B., Chen, S., Nevin, K. P., & Lovley, D. R. (2014). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 80(15), 4599–4605.

    PubMed  PubMed Central  Google Scholar 

  • Rungrattanakasin, B., Premjet, S., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2018). Cloning and expression of an endoglucanase gene from the thermotolerant fungus Aspergillus fumigatus DBiNU-1 in Kluyveromyces lactis. Brazilian Journal of Microbiology, 49(3), 647–655.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabathé, F., & Soucaille, P. (2003). Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. Journal of Bacteriology, 185, 1092–1096.

    PubMed  PubMed Central  Google Scholar 

  • Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30(5), 279–291.

    CAS  Google Scholar 

  • Sahoo, R. K., Kumar, M., Sukla, L. B., & Subudhi, E. (2017). Bioprospecting hot spring metagenome: Lipase for the production of biodiesel. Environmental Science and Pollution Research International, 24(4), 3802–3809.

    CAS  PubMed  Google Scholar 

  • Salminen, E., & Rintala, J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste – A review. Bioresource Technology, 83, 13–26.

    CAS  PubMed  Google Scholar 

  • Shang, G., Zhang, C., Wang, F., Qiu, L., Guo, X., & Xu, F. (2019). Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw-effects of temperature and retention time. Environmental Science and Pollution Research International, 26(28), 29424–29434.

    Google Scholar 

  • Sharma, V., Bhat, B., Gupta, M., Vaid, S., Sharma, S., Nargotra, P., Singh, S., & Bajaj, B. K. (2018). Role of systematic biology in biorefining of lignocellulosic residues for biofuels and chemicals production. In O. Singh & A. Chandel (Eds.), Sustainable biotechnology- enzymatic resources of renewable energy (pp. 5–55). Cham: Springer.

    Google Scholar 

  • Sharma, H. K., Xu, C., & Qin, W. (2019). Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview. Waste and Biomass Valorization, 10, 235–251.

    CAS  Google Scholar 

  • Stewart, R. D., Auffret, M. D., Warr, A., Walker, A. W., Roehe, R., & Watson, M. (2019). Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nature Biotechnology, 37(8), 953–961.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung, S., & Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53, 43–52.

    CAS  PubMed  Google Scholar 

  • Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takasaki, K., Miura, T., Kanno, M., Tamaki, H., Hanada, S., Kamagata, Y., & Kimura, N. (2013). Discovery of glycoside hydrolase enzymes in an avicel-adapted forest soil fungal community by a metatranscriptomic approach. PLoS One, 8(2), e55485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, H., Mooij, M. J., Barret, M., Hegarty, P. M., Harington, C., Dobson, A. D., & O'Gara, F. (2014). Identification of novel phytase genes from an agricultural soil-derived metagenome. Journal of Microbiology and Biotechnology, 24(1), 113–118.

    CAS  PubMed  Google Scholar 

  • Tan, H., Wu, X., Xie, L., Huang, Z., Peng, W., & Gan, B. (2016). A novel phytase derived from an acidic peat-soil microbiome showing high stability under acidic plus pepsin conditions. Journal of Molecular Microbiology and Biotechnology, 26(4), 291–301.

    CAS  PubMed  Google Scholar 

  • Thanh, V. N., Thuy, N. T., Huong, H. T. T., Hien, D. D., Hang, D. T. M., Anh, D. T. K., Hüttner, S., Larsbrink, J., & Olsson, L. (2019). Surveying of acid-tolerant thermophilic lignocellulolytic fungi in Vietnam reveals surprisingly high genetic diversity. Scientific Reports, 9(1), 3674.

    PubMed  PubMed Central  Google Scholar 

  • Tyner, W. C. (2008). The US ethanol and biofuels boom: Its origins, current status, and future prospects. Bioscience, 58, 646–653.

    Google Scholar 

  • U.S. Energy Information Administration. (2019). Biofuels explained. https://www.eia.gov/energyexplained/biofuels/ Accessed 12/01/2020.

  • Uchiyama, I., Mihara, M., Nishide, H., Chiba, H., & Kato, M. (2019). MBGD update 2018: Microbial genome database based on hierarchical orthology relations covering closely related and distantly related comparisons. Nucleic Acids Research, 47(D1), D382–D389.

    CAS  PubMed  Google Scholar 

  • USDA. (2019). US bioenergy statistics https://www.ers.usda.gov/data-products/us-bioenergy-statistics/ Accessed 12/01/2020.

  • Valero, D., Rico, C., Canto-Canché, B., Domínguez-Maldonado, J. A., Tapia-Tussell, R., Cortes-Velazquez, A., & Alzate-Gaviria, L. (2018). Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material. Energies, 11(8), 2101.

    Google Scholar 

  • Velázquez-Valadez, U., Farías-Sánchez, J. C., Vargas-Santillán, A., & Castro-Montoya, A. J. (2016). Tequilana weber agave bagasse enzymatic hydrolysis for the production of fermentable sugars: Oxidative-alkaline pretreatment and kinetic modeling. Bioenergy Research, 9, 998–1004.

    Google Scholar 

  • Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2, 573–584.

    CAS  Google Scholar 

  • Vyas, P., Kumar, A., & Singh, S. (2018). Biomass breakdown: A review on pretreatment, instrumentations and methods. Frontiers in Bioscience (Elite Edition), 10, 155–174.

    Google Scholar 

  • Wang, Y., Leng, L., Islam, M. K., Liu, F., Lin, C. S. K., & Leu, S. Y. (2019). Substrate-related factors affecting cellulosome-induced hydrolysis for lignocellulose valorization. International Journal of Molecular Sciences, 20(13), 3354.

    CAS  PubMed Central  Google Scholar 

  • Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. (2008). Optimisation of the anaerobic digestion of agriculture resource. Bioresource Technology, 99, 7928–7940.

    CAS  PubMed  Google Scholar 

  • Whitman, W., Bowen, T., & Boone, D. (2006). The methanogenic bacteria. PRO, 3, 165–207.

    Google Scholar 

  • Xu, H., Chang, J., Wang, H., Liu, Y., Zhang, X., Liang, P., & Huang, X. (2019). Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. Science of the Total Environment, 10, 695:133876.

    Google Scholar 

  • Yan, Q., & Fong, S. S. (2017). Challenges and advances for genetic engineering of non-model bacteria and uses in consolidated bioprocessing. Frontiers in Microbiology, 8, 2060.

    PubMed  PubMed Central  Google Scholar 

  • Yan, W., Li, F., Wang, L., Zhu, Y., Dong, Z., & Bai, L. (2017). Discovery and characterization of a novel lipase with transesterification activity from hot spring metagenomic library. Biotechnology Reports (Amsterdam, Netherlands), 14, 27–33.

    Google Scholar 

  • Yang, Y. Q., Shen, D. S., Li, N., Xu, D., Long, Y. Y., & Lu, X. Y. (2013). Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion. Environmental Science and Pollution Research International, 20(4), 2162–2171.

    Google Scholar 

  • Yang, C., Xia, Y., Qu, H., Li, A. D., Liu, R., Wang, Y., & Zhang, T. (2016). Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnology for Biofuels, 9, 138.

    PubMed  PubMed Central  Google Scholar 

  • Yazid, N. A., Barrena, R., Komilis, D., & Sánchez, A. (2017). Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustainability, 9, 22.

    Google Scholar 

  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.

    CAS  Google Scholar 

  • Zarafeta, D., Moschidi, D., Ladoukakis, E., Gavrilov, S., Chrysina, E. D., Chatziioannou, A., Kublanov, I., Skretas, G., & Kolisis, F. N. (2016). Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases. Scientific Reports, 6, 38886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., He, P. J., Lü, F., Shao, L. M., & Wang, P. (2007). Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Research, 41, 4468–4478.

    CAS  PubMed  Google Scholar 

  • Zhang, E., Li, J., Zhang, K., et al. (2018). Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions. AMB Express, 8(45), 1–10.

    Google Scholar 

  • Zhao, Y., Damgaard, A., & Christensen, T. H. (2018). Bioethanol from corn Stover–a review and technical assessment of alternative biotechnologies. Progress in Energy and Combustion Science, 67, 275–291.

    Google Scholar 

  • Zuroff, T. R., Xiques, S. B., & Curtis, W. R. (2013). Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnology for Biofuels, 6, 59.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council of Science and Technology (CONACYT) project 116886, Mexico. Scholarships granted by CONACyT-Mexico 589301 for Carreón-Anguiano K.G., 242995 for Canseco-Pérez M.A., and 886122 for Barahona-Cortés R., and the support by BioAli-CYTED are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blondy Canto-Canché .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canto-Canché, B. et al. (2020). Use of Agroindustrial Biomass for Biofuel and Enzyme Discovery and Production. In: Chong, P., Newman, D., Steinmacher, D. (eds) Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery. Springer, Cham. https://doi.org/10.1007/978-3-030-51358-0_15

Download citation

Publish with us

Policies and ethics