Skip to main content
Log in

Production of Raw Starch-Saccharifying Thermostable and Neutral Glucoamylase by the Thermophilic Mold Thermomucor indicae-seudaticae in Submerged Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among physical and nutritional parameters optimized by “one variable at a time” approach, four cultural variables (sucrose, MgSO4 .7H2O, inoculum size, and incubation period) significantly affected glucoamylase production. These variables were, therefore, selected for optimization using response surface methodology. The p-values of the coefficients for linear effect of sucrose and inoculum size were less than 0.0001, suggesting them to be the key experimental variables in glucoamylase production. The enzyme production (34 U/ml) attained under optimized conditions (sucrose, 2%; MgSO4 .7H2O, 0.13%; yeast extract, 0.1%; inoculum size, 5 × 106 spores per 50 ml production medium; incubation time, 48 h; temperature, 40°C; and pH 7.0) was comparable with the value predicted by polynomial model (34.2 U/ml). An over all 3.1-fold higher enzyme titers were attained due to response surface optimization. The experimental model was validated by carrying out glucoamylase production in shake flasks of increasing capacity (0.25–2.0 l) and 22-l laboratory bioreactors (stirred tank and airlift), where the enzyme production was sustainable. Furthermore, the fermentation time was reduced from 48 h in shake flasks to 32 h in bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domiguez-Espinosa, R. (2004). Trends in Biotechnology, 22, 477–485.

    Article  CAS  Google Scholar 

  2. Crabb, W. D., & Shetty, J. K. (1999). Current Opinion in Microbiology, 2, 252–256.

    Article  CAS  Google Scholar 

  3. Archer, D. B. (2000). Current Opinion in Biotechnology, 11, 478–483.

    Article  CAS  Google Scholar 

  4. Maarel, M. J. E. C., Veen, B. V. D., Uitdehaag, J. C. M., Leemhuis H., & Dijkhuijen, L. (2002). Journal of Biotechnology, 94, 137–155.

    Article  Google Scholar 

  5. Reilly, P. J. (1999). Starch/Starke, 51, 269–274.

    Article  CAS  Google Scholar 

  6. Pandey, A. (1995). Starch/Starke, 47, 439–445.

    Article  CAS  Google Scholar 

  7. Vieille, C., & Zeikus, G. J. (2001). Microbiology and Molecular Biology Reveiws, 65, 1–43.

    Article  CAS  Google Scholar 

  8. Vihinen, M., & Mantsala, P. (1989). CRC Critical Reviews in Biochemisty and Molecular Biology, 24, 329–419.

    CAS  Google Scholar 

  9. Thorsen, T. S., Johnsen, A. H., Josefsen, K., & Jensen, B. (2006). Biochimica et Biophysica Acta, 1764, 671–676.

    CAS  Google Scholar 

  10. Pham, P. L., Taillandier, P., Delmas, M., & Strehaiano, P. (1998). World Journal of Microbiolology and Biotechnology, 14, 185–190.

    Article  CAS  Google Scholar 

  11. Cochran, W. G, & Cox, D. W. (1968). Experimental Designs. New York: John-Wiley and Sons. Inc.

    Google Scholar 

  12. Myers, R. H., & Montgomery, D. C. (1995). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. New York: J. Wiley & Sons.

    Google Scholar 

  13. Gu, X.-B., Zheng, Z.-M., Yu, H.-Q., Wang, J., Liang, F.-L., & Liu, R.-L. (2005). Process Biochemistry, 40, 3196–3201.

    Article  CAS  Google Scholar 

  14. Kumar, S., & Satyanarayana, T. (2001). World Journal of Microbiology and Biotechnology, 17, 83–87.

    Article  CAS  Google Scholar 

  15. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2006). Bioresource Technology, 98, 345–352.

  16. Satyanarayana, T., Noorwez, S. M., Kumar, S., Rao, J. L. U. M., Ezhilvannan, M., & Kaur, P. (2004). Biochemical Society Transactions, 32, 276–279.

    Article  CAS  Google Scholar 

  17. Subrahmanyam, A., Mehrotra, B. S., & Thirumalachar, M. J. (1977). Georgia Journal of Science, 35, 106.

    Google Scholar 

  18. Emerson, R. (1941). Lloydia, 4, 77–144.

    Google Scholar 

  19. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Lowry, O. W., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biology and Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Kaur, P., & Satyanarayana, T. (2004). World Journal of Microbiology and Biotechnology, 20, 419–425.

    Article  CAS  Google Scholar 

  22. Kumar, S., & Satyanarayana, T. (2003). Biotechnology Progress, 19, 936–944.

    Article  CAS  Google Scholar 

  23. Moreira, F. G., de Lima, F. A., Pedrinho, S. R. F., Lenartovicz, V., de Souza, C. G. M., & Peralta, R. M. (1999). Revista de Microbiologia, 30, 157–162.

    Article  CAS  Google Scholar 

  24. Fattah, Y. R. A. (2002). Biotechnology Letters, 24, 1222–2002.

    Article  Google Scholar 

  25. Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., et al. (2003). Biochemical Engineering Journal, 15, 107–115.

    CAS  Google Scholar 

  26. Vaidya, R., Vyas, P., & Chhatpar, H. S. (2003). Enzyme and Microbial Technology, 33, 92–96.

    Article  CAS  Google Scholar 

  27. Babu, K. R., & Satyanarayana, T. (1993). Enzyme and Microbial Technology, 15, 1066–1069.

    Article  CAS  Google Scholar 

  28. Humphrey, A. (1998). Biotechnology Progress, 14, 3–7.

    Article  CAS  Google Scholar 

  29. Sharma, D. C., & Satyanarayana, T. (2006). Bioresource Technology, 97, 727–733.

    Article  CAS  Google Scholar 

  30. Rao, Y. K., Lu, S.-C., Liu, B.-L., & Tzeng, Y.-M. (2006). Biochemical Engineering Journal, 28, 57–66.

    Article  CAS  Google Scholar 

  31. Morkeberg, R., Carlsen, M., & Nielsen, J. (1995). Microbiology (United Kingdom), 141, 1449–1454.

    Google Scholar 

  32. Narang, S., & Satyanarayana, T. (2001). Letters in Applied Micribiology, 32, 31–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the University Grants Commission, Government of India for providing financial assistance. SK and PK thank the Council of Scientific and Industrial Research, Government of India for awarding fellowship during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Kumar, P. & Satyanarayana, T. Production of Raw Starch-Saccharifying Thermostable and Neutral Glucoamylase by the Thermophilic Mold Thermomucor indicae-seudaticae in Submerged Fermentation. Appl Biochem Biotechnol 142, 221–230 (2007). https://doi.org/10.1007/s12010-007-0011-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0011-x

Keywords

Navigation