Skip to main content
Log in

Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

An extremely thermophilic bacterial isolate that produces a high titer of thermostable endoxylanase and β-xylosidase extracellularly in an inducible manner was identified as Geobacillus thermodenitrificans TSAA1. The distinctive features of this strain are alkalitolerance and halotolerance. The endoxylanase is active over a broad range of pH (5.0–10.0) and temperatures (30–100 °C) with optima at pH 7.5 and 70 °C, while β-xylosidase is optimally active at pH 7.0 and 60 °C. The T 1/2 values of the endoxylanase and β-xylosidase are 30 min at 80 °C, and 180 min at 70 °C, respectively. The endoxylanase activity is stimulated by dithiothreitol, but inhibited strongly by EDAC and Woodward’s reagent K. N-BS and DEPC strongly inhibited β-xylosidase. MALDI-ToF (MS/MS) analysis of tryptic digest of β-xylosidase revealed similarity with that of G. thermodenitrificans NG 80-2, and suggested that this belongs to the GH 52 glycosyl hydrolase super family. The action of endoxylanase on birch wood xylan and agro-residues such as wheat bran and wheat straw liberated xylooligosaccharides similar to endoxylanases of the family 10 glycoside hydrolases, while the enzyme preparation having both endoxylanase and β-xylosidase liberated xylose as main hydrolysis product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties and applications. Compr Rev Food Sci Saf 10:2–16

    Article  CAS  Google Scholar 

  • Adsul MG, Bastawde KB, Gokhale DV (2009) Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Biores Technol 100:6488–6495

    Article  CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Archana A, Satyanarayana T (2003) Purification and characterization of a cellulase free xylanase of a moderate thermophile Bacillus licheniformis A99. World J Microbiol Biotechnol 19:53–57

    Article  CAS  Google Scholar 

  • Bravman T, Zolotnitsky G, Shulami S, Belakhov V, Solomon D, Baasov T, Shoham G, Shoham Y (2001a) Stereochemistry of family 52 glycosyl hydrolases: a β-xylosidase from Bacillus stearothermophilus T-6 is a retaining enzyme. FEBS Lett 495:39–43

    Article  PubMed  CAS  Google Scholar 

  • Bravman T, Mechaly A, Shulami S, Belakhov V, Baasov T, Shoham G, Shoham Y (2001b) Glutamic acid 160 is the acid–base catalyst of β-xylosidase from Bacillus stearothermophilus T-6: a family 39 glycoside hydrolase. FEBS Lett 495:115–119

    Article  PubMed  CAS  Google Scholar 

  • Brüx C, David AB, Shezifi DS, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol 359:97–109

    Article  PubMed  Google Scholar 

  • Canakci S, Inan K, Kacagan M, Belduz AO (2007) Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey. J Microbiol Biotechnol 17(8):1262–1770

    PubMed  CAS  Google Scholar 

  • Canakci S, Cevher Z, Inan K, Tokgoz M, Bahar F, Kacagan M, Sal FA, Belduz AO (2012) Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71. World J Microbiol Biotechnol 28(5):1981–1988

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. J Nucleic Acids Res 37(database issue):D233–D238

    Article  CAS  Google Scholar 

  • Collin T, Gerday C, Feller G (2005) Xylanase, xylanase families and extremophilic xylanase. FEMS Microbiol Rev 29:3–23

    Article  Google Scholar 

  • Cournoyer B, Faure D (2003) Radiation and functional specialization of the family-3 glycoside hydrolases. J Mol Microbiol Biotechnol 5:190–198

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Tang W, Goto Y, van der Donk WA (2012) Geobacillins: lantibiotics from Geobacillus thermodenitrificans. Proc Natl Acad Sci USA 109:5241–5246

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova J, Kuisiene N (2012) Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK11. Microbiology 81:418–424

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 87:S287–S291

    Google Scholar 

  • Gupta S, Kuhad RC, Bhushan B, Hoondal GS (2001) Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World J Microbiol Biotechnol 17:5–8

    Article  CAS  Google Scholar 

  • Hansen SA (1975) TLC method for identification of mono, di and trisaccharides. J Chromatogr 107:224–226

    Article  CAS  Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730

    PubMed  CAS  Google Scholar 

  • Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase free xylanase from novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33:2279–2285

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680

    Google Scholar 

  • Lee YE, Zeikus JG (1993) Genetic organization, sequence and biochemical characterization of recombinant β-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. J Gen Microbiol 139:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Lorenz W, Wiegel J (1997) Isolation, analysis, and expression of two genes from Thermoanaerobacterium saccharolyticum strain JW/SL-YS485: a β-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. J Bacteriol 179:5436–5441

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Google Scholar 

  • Mai V, Wiegel J, Lorenz W (2000) Cloning, sequencing, and characterization of the bifunctional xylose-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143

    Article  PubMed  CAS  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme Microb Technol 39:1492–1498

    Article  CAS  Google Scholar 

  • Manelius Å, Dahlberg L, Holst O (1994) Some properties of a thermostable β-xylosidase from Rhodothermus marinus. Appl Biochem Biotechnol 44:39–48

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mohana S, Shah A, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Biores Technol 99:7553–7564

    Article  CAS  Google Scholar 

  • Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672

    PubMed  CAS  Google Scholar 

  • Okazaki W, Akiba T, Horikoshi K, Akahoshi R (1985) Purification and characterization of xylanases from alkaliphilic thermophilic Bacillus sp. Agric Biol Chem 49:2033–2039

    Article  CAS  Google Scholar 

  • Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766

    Article  PubMed  CAS  Google Scholar 

  • Quintero D, Velasco Z, Hurtado-Gomez E, Neira JL, Contreras LM (2007) Isolation and characterization of a thermostable β-xylosidase in the thermophilic bacterium Geobacillus pallidus. Biochim Biophys Acta 1774:510–518

    Article  PubMed  CAS  Google Scholar 

  • Rajoka MI, Khan S (2005) Hyper-production of a thermotolerant β-xylosidase by a deoxy-D glucose and cycloheximide resistant mutant derivative of Kluyveromyces marxianus PPY 125. Electron J Biotechnol 8:177–184

    Article  CAS  Google Scholar 

  • Roberge M, Shareck F, Morosoli R, Kluepfel D, Dupont C (1997) Characterization of two important histidine residues in the active site of xylanase A from Streptomyces lividans, a family 10 glycanase. Biochemistry 36:7769–7775

    Article  PubMed  CAS  Google Scholar 

  • Ruttersmith LD, Daniel RM (1993) Thermostable α-glucosidase and β-xylosidase from Thermotoga sp. strain FjSS3-B.1. Biochim Biophys Acta 1156:167–172

    Article  PubMed  CAS  Google Scholar 

  • Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Biores Technol 112:199–205

    Article  CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295

    Article  CAS  Google Scholar 

  • Sá-Pereira P, Paveia H, Costa-Ferreira M, Aires-Barros MR (2003) A new look at xylanases: an overview of purification strategies. Appl Biochem Biotechnol Part B Mol Biotechnol 24:257–281

    Google Scholar 

  • Satyanarayana T, Sharma A, Mehta D, Puri AK, Kumar V, Nisha M, Joshi S (2012) Biotechnological applications of biocatalysts from the firmicutes Bacillus and Geobacillus species. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology, part 2, pp 343–379

  • Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397

    Article  PubMed  CAS  Google Scholar 

  • Shao W, Wiegel J (1992) Purification and characterization of a thermostable β-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853

    PubMed  CAS  Google Scholar 

  • Sharma A, Adhikari S, Satyanarayana T (2007) Alkali-thermostable and cellulase free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490

    Article  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    Article  PubMed  CAS  Google Scholar 

  • Sunna A, Puls J, Antranikian G (1997) Characterization of the xylanolytic enzyme system of the extremely thermophilic anaerobic bacteria Thermotoga maritima, T. neapolitana, and T. thermarum. Comp Biochem Physiol A Physiol 118:453–461

    Article  Google Scholar 

  • Suzuki T, Kitagawa E, Sakakibara F, Ibata K, Usui K, Kawai K (2001) Cloning, expression, and characterization of a family 52 β-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci Biotechnol Biochem 65:487–494

    Article  PubMed  CAS  Google Scholar 

  • Vafiadi C, Christakopoulos P, Topakas E (2010) Purification, characterization and mass spectrometric identification of two thermophilic xylanases from Sporotrichum thermophile. Process Biochem 45:419–424

    Article  CAS  Google Scholar 

  • Vazquez MJ, Alonso JL, Dominguez H, Parajo JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes; sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–42

    Article  PubMed  CAS  Google Scholar 

  • Xu ZH, Bail YL, Xu X, Shi JS, Tao WI (2005) Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. UN024 with wheat bran as the main substrate. World J Microbiol Biotechnol 21:575–581

    Article  CAS  Google Scholar 

  • Xue YM, Shao WL (2004) Expression and characterization of a thermostable β-xylosidase from hyperthermophile Thermotoga maritima. Biotechnol Lett 26:1511–1515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Ministry of Environment and Forests, Indian Council of Medical Research and Department of Biotechnology, Government of India, New Delhi, for providing financial assistance while carrying out the work presented in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, A., Kumar, V. & Satyanarayana, T. Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17, 357–366 (2013). https://doi.org/10.1007/s00792-013-0524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0524-x

Keywords

Navigation