Skip to main content
Log in

Highly Thermostable Xylanase of the Thermophilic Fungus Talaromyces thermophilus: Purification and Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable xylanase from a newly isolated thermophilic fungus Talaromyces thermophilus was purified and characterized. The enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl cellulose anion exchange chromatography, P-100 gel filtration, and Mono Q chromatography with a 23-fold increase in specific activity and 17.5% recovery. The molecular weight of the xylanase was estimated to be 25kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gel filtration. The enzyme was highly active over a wide range of pH from 4.0 to 10.0. The relative activities at pH5.0, 9.0, and 10.0 were about 80%, 85.0%, and 60% of that at pH7.5, respectively. The optimum temperature of the purified enzyme was 75°C. The enzyme showed high thermal stability at 50°C (7days) and the half-life of the xylanase at 100°C was 60min. The enzyme was free from cellulase activity. K m and V max values at 50°C of the purified enzyme for birchwood xylan were 22.51mg/ml and 1.235μmol min−1 mg−1, respectively. The enzyme was activated by Ag+, Co2+, and Cu2+; on the other hand, Hg2+, Ba2+, and Mn2+ inhibited the enzyme. The present study is among the first works to examine and describe a secreted, cellulase-free, and highly thermostable xylanase from the T. thermophilus fungus whose application as a pre-bleaching aid is of apparent importance for pulp and paper industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bastawde, K. B. (1992). World Journal of Microbiology & Biotechnology, 8, 353–368. doi:10.1007/BF01198746.

    Article  CAS  Google Scholar 

  2. Joseleau, J. P., Comtat, J., & Rue, l. K. (1992). Progress in Biotechnology, 7, 1–15.

    CAS  Google Scholar 

  3. Biely, P. (1985). Trends in Biotechnology, 3, 286–290. doi:10.1016/0167-7799(85)90004-6.

    Article  CAS  Google Scholar 

  4. Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456. doi:10.1111/j.1574-6976.1999.tb00407.x.

    Article  CAS  Google Scholar 

  5. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338. doi:10.1007/s002530100704.

    Article  CAS  Google Scholar 

  6. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34. doi:10.1007/s002530100624.

    Article  CAS  Google Scholar 

  7. Yang, X., Chen, H., Gao, H., & Li, Z. (2001). Bioresource Technology, 78, 277–280. doi:10.1016/S0960-8524(01)00024-4.

    Article  CAS  Google Scholar 

  8. Maat, J., Roza, M., Verbakel, J., Stam, H., Santos de Silva, M. J., & Bosse, M. (1992). Amsterdam, The Netherlands: Elsevier, pp. 349–360.

  9. Madlala, A. M., Bissoon, S., Singh, S., & Christov, L. (2001). Biotechnology Letters, 23, 345–351. doi:10.1023/A:1005693205016.

    Article  CAS  Google Scholar 

  10. Tuohy, M. G., & Coughlan, M. P. (1992). Bioresource Technology, 39, 131–137. doi:10.1016/0960-8524(92)90131-G.

    Article  CAS  Google Scholar 

  11. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Bioresource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  12. Kuhad, R. C., & Singh, A. (1993). Critical Reviews in Biotechnology, 13, 151–172. doi:10.3109/07388559309040630.

    Article  CAS  Google Scholar 

  13. Yu, E. K. C., Tan, L. U. L., Chan, M. K., & Saddler, J. N. (1993). Enzyme and Microbial Technology, 9, 16–24. doi:10.1016/0141-0229(87)90044-5.

    Article  Google Scholar 

  14. Coughlan, M. P., Tuohy, M. G., Filho, E. X. F., Puls, J., Clayessens, M., Vrsanská, M., et al. (1993). In M. P. Coughlan & G. P.Hazlewood (Eds.) (pp. 53–84). London: Portland.

  15. Gomes, J., Purkarthofer, H., Hany, M., Kapplmüller, J., Sinner, M., & Steiner, W. (1993). Applied Microbiology and Biotechnology, 39, 700–707. doi:10.1007/BF00164453.

    Article  CAS  Google Scholar 

  16. Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Microbiology and Molecular Biology Reviews, 64, 461–488. doi:10.1128/MMBR.64.3.461-488.2000.

    Article  CAS  Google Scholar 

  17. Singh, S., Madlala, A. M., & Prior, B. A. (2003). FEMS Microbiology Reviews, 27, 3–16. doi:10.1016/S0168-6445(03)00018-4.

    Article  CAS  Google Scholar 

  18. Lite, Li., Hongmei, T., Yongqiang, C., Zhengqiangand, J., & Shaoqing, Y. (2005). Enzyme and Microbial Technology, 38, 780–787.

    Google Scholar 

  19. Kelly, C. T., O’Mahony, M. R., & Fogarty, W. M. (1989). Biotechnology Letters, 11, 885–890. doi:10.1007/BF01026846.

    Article  CAS  Google Scholar 

  20. Singh, S., Pillay, B., & Prior, B. A. T. (2000). Enzyme and Microbial Technology, 20, 502–508.

    Article  Google Scholar 

  21. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–413.

    Article  CAS  Google Scholar 

  22. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi::10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  23. Lacke, A. H. (1988). Methods in Enzymology, 160, 679–684.

    Article  Google Scholar 

  24. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  26. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 56, 658–666. doi:10.1021/ja01318a036.

    Article  CAS  Google Scholar 

  27. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  28. Yu, E. K. C., Tan, L. U. L., Chan, M. K.-H., Deschatelets, L., & John Saddler, N. (1987). Enzyme and Microbial Technology, 9, 16–24. doi:10.1016/0141-0229(87)90044-5.

    Article  CAS  Google Scholar 

  29. Damaso Monica, C. T., Andrade, C. M. M. C., Nei, P. E. R. E. I., & Ra, J. R. (2002). Brazilian Journal of Microbiology, 33, 333–338. doi:10.1590/S1517-83822002000400011.

    Google Scholar 

  30. Cesar, T., & Mrsa, V. (1996). Enzyme and Microbial Technology, 19, 289–296. doi:10.1016/0141-0229(95)00248-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Tunisian government’s “Contrat-Programme” through the “Ministère de la Recherche Scientifique, de la Technologie et du Développement des Compétences” of Tunisia. The authors wish to express their sincere gratitude to Prof. Ali Gargouri (Head of the Laboratory of Molecular Genetics of Eukaryotes, CBS Sfax Tunisia) for his critical reading and valuable suggestions during the experimental work. They also wish to extend their sincere thanks to Mr. Anouar Smaoui from FSS for his constructive editing of the current paper and careful proofreading of its Englishness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafedh Belghith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maalej, I., Belhaj, I., Masmoudi, N.F. et al. Highly Thermostable Xylanase of the Thermophilic Fungus Talaromyces thermophilus: Purification and Characterization. Appl Biochem Biotechnol 158, 200–212 (2009). https://doi.org/10.1007/s12010-008-8317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8317-x

Keywords

Navigation