Skip to main content

Nanobiotechnology: A New Window for Management of Mosquito Vectors

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

Mosquitoes are the vectors of life threatening diseases such as malaria, dengue, chikungunya, yellow fever, filariasis, Japanese encephalitis, Zika, etc. These vector-borne disease transmissions can be interrupted by avoiding infected mosquitoes and human contact or by killing them during their different developmental stages of life cycle. Use of different chemical insecticides for adult control and larvicides for larval control is now showing diminishing effect due to the emergence of insecticide resistance in mosquito vectors. Nanobiotechnology intends to synthesize, improve, and utilize nanomaterials in the current field of biotechnology. Recent advances in this field of research to design and synthesize effective nanoparticles (NPs) of various shapes and sizes have led to the development of new mosquitocidal agents. In this chapter, we tried to present the application of different biologically synthesized nanoparticles having mosquitocidal activities. Graphene quantum dots are also reported to be potent candidates as larvicidal agent in mosquito vector control. Nanoemulsions formulated from different essential oils seem to be utilized for the management of mosquito vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amado JRR, Prada AL, Diaz JG, Souto RNP, Arranz JCE, de Souza TP (2020) Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion. Environ Sci Pollut Res 27:9410–9423

    Article  CAS  Google Scholar 

  • Amarasinghe LD, Wickramarachchi PASR, Aberathna AAAU, Sithara WS, De Silva CR (2020) Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon 6:e04322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256

    Article  Google Scholar 

  • Anjali CH, Khan SS, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2011) Formulation of water dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion – a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    Article  CAS  PubMed  Google Scholar 

  • Anjali CH, Sudheerkhan S, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Arjunan NK, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res 112(3):1053–1063

    Article  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12(3):262–268

    Article  PubMed  Google Scholar 

  • Aswan Ali AM, Syed Ali M, Vijaya PP, Yogananth N, Munees Prabhu M (2014) Green synthesis of silver nanoparticles from Ocimum sanctum against mosquito vectors for malaria and dengue. Int J Pharmaceut Sci Nanotechnol 7(4):2666–2670

    CAS  Google Scholar 

  • Attia MM, Soliman SM, Khalf MA (2017) Hydrophilic nanosilica as a new larvicidal and molluscicidal agent for controlling of major infectious diseases in Egypt. Vet World 10(9):1046–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramani S, Rajendhiran T, Moola A, Kumari B (2017) Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res 24:15125–15133

    Article  CAS  Google Scholar 

  • Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:1–10

    Article  Google Scholar 

  • Bannoth RN, Singh Y, Swarnagowreswari G, Satyavathi R, Ramachandra RP (2014) Silver nanoparticle synthesis from leaf extract of Chloroxylon swietenia dc as an effective larvicide on dengue vector Aedes albopictus (skuse) (insecta: diptera: culicidae). Int J Recent Sci Res 5(3):580–584

    Google Scholar 

  • Banu AN, Balasubramanian C (2014) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(8):2869–2877

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C (2015) Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae). Parasitol Res 114(11):4069–4079

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(1):311–316

    Article  PubMed  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami R (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083

    Article  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica from medicine to pest control. Parasitol Res 103(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  PubMed  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer – a brief review. Enzym Microb Technol 95:58–68

    Article  CAS  Google Scholar 

  • Bhatt L, Kale RD (2015) Development of mosquito repellent textiles using Chrysanthemum oil nano emulsion. Int J Text Fashion Technol 5(3):15–22

    Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya DR, Rajavel AR, Natarajan R, Mohapatra PK, Jambulingam P, Mahanta J, Prakash A (2014) Faunal richness and the checklist of Indian mosquitoes (Diptera: Culicidae). Check List 10(6):1342–1358

    Article  Google Scholar 

  • Blandin S, Moita LF, Köcher T et al (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the defensin gene. EMBO Rep 3(9):852–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borase HP, Patil CD, Salunkhe RB, Narkhede CP, Salunke BK, Patil SV (2013) Phytosynthesized silver nanoparticles: a potent mosquito biolarvicidal agent. J Nanomed Biotherapeut Discov 3(1):111

    Article  CAS  Google Scholar 

  • Botas GDS, Cruz RAS, de Almeida FB, Duarte JL, Araújo RS, Souto RNP, Ferreira R, Carvalho JCT, Santos MG, Rocha L, Pereira VLP, Fernandis CP (2017) Baccharis reticularia DC and limonene nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 22(11):1990

    Article  PubMed Central  CAS  Google Scholar 

  • Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62

    Article  CAS  PubMed  Google Scholar 

  • Chitra G, Balasubramani G, Ramkumar R, Sowmiya R, Perumal P (2015) Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1407–1415

    Article  PubMed  Google Scholar 

  • Dass AK, Mariappan P (2018) Insecticidal activity of Green Synthesized silver Nanoparticles using Coleus aromaticus and Wrightia tinctoria leaf extracts against Culex quinquefasciatus. Vector Biol J 3:2

    Google Scholar 

  • Demirci B, Tsikolia M, Bernier UR, Agramonte NM, Alqasoumi SI, AI-Yahya MA, Al-Rehaily AJ, Yusufoglu HS, Demirci F, BaÅŸer KH, Khan IA, Tabanca N (2013) Phoenix dactylifera L. spa the essential oil: chemical composition and repellent activity against the yellow fever mosquito. Acta Trop 128(3):557–560

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. J Trop Dis 3:174–179

    CAS  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  • Duarte JL, Amado JRR, Oliveira AE, Cruz RAS, Ferreira AM, Souto RNP, Falcão DQ, Carvalho JCT (2015) Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev Bras 25:189–192

    CAS  Google Scholar 

  • Echeverría J, Albuquerque RD (2019) Nanoemulsions of essential oils: new tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicine 6:42

    Google Scholar 

  • Elemike EE, Onwudiwe DC, Ekennia AC, Sonde CU, Ehiri RC (2017) Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities. Molecules 22:1–15

    Google Scholar 

  • Forgiarini A, Esquena J, González C, Solans C (2000) Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. Progr Colloid Polym Sci 115:36–39

    Article  CAS  Google Scholar 

  • Fox CL, Modak SM (1974) Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 5(6):582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Das GS, Majumdar R, Sarkar S (2018) Nontoxic water soluble nanocarbons prevent respiration of mosquito larvae, causing anoxia. J Vector Borne Dis 55:159–164

    Article  CAS  PubMed  Google Scholar 

  • Ghosh V, Mukherjee A, Chandrasekaran N (2013) Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian J Chem 25:321–323

    Article  Google Scholar 

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 4(10):799–803

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, New York

    Book  Google Scholar 

  • Govindarajan M, Benelli G (2016) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res 115(3):925–935

    Article  PubMed  Google Scholar 

  • Govindarajan M, Nicoletti M, Benelli G (2016) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761

    Article  CAS  Google Scholar 

  • Govindrajan M, Jebamesan A, Reetha D (2005) Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus say. Trop Biomed 22(1):1–3

    Google Scholar 

  • Hajra A, Dutta S, Mondal NK (2016) Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J Parasit Dis 40(4):1519–1527

    Article  PubMed  Google Scholar 

  • Hajra A, Mondal NK (2015) Silver nanoparticles: an eco-friendly approach for mosquito control. Int J Sci Res Environ Sci 3(2):0047–0061

    CAS  Google Scholar 

  • Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall). Parasitol Res 112(4):1451–1459

    Article  PubMed  Google Scholar 

  • Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, plasmodium parasites and malaria mosquitoes. Parasitol Int 65:276–284

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi VA, Santhoshkumar T, Marimuthu S (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Murugan K, Hwang JS (2013) Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J Entomol Acarol Res 45(2):e11

    Article  Google Scholar 

  • Kamalakannan S, Gobinath C, Ananth S (2014) Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on filarial vector, Culex quinquefasciatus. Int J Pharmaceut Sci Rev Res 24(2):124–132

    CAS  Google Scholar 

  • Karthik S, Suriyaprabha R, Vinoth M, Srither SR, Manivasakan P, Rajendran V, Suresh V (2017) Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from Acalypha indica for biomedical applications. RSC Adv 7:41763–41770

    Article  CAS  Google Scholar 

  • Khan SU, Saleh TA, Wahab A, Khan MHU, Khan D, Khan WU, Rahim A, Kamal S, Khan FU, Fahad S (2018) Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 13:733–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109:461–472

    Article  PubMed  Google Scholar 

  • Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B (2017) Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J Photochem Photobiol B 171:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Kumar NS (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res Int 22(22):17753–17768

    Article  CAS  PubMed  Google Scholar 

  • Li N, Than A, Wang X, Xu S, Sun L, Duan H, Xu C, Chen P (2016) Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 10(3):3622–3629

    Article  CAS  PubMed  Google Scholar 

  • Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317

    Article  PubMed  Google Scholar 

  • Marimuthu S, Rahuman AA, Kirthi AV, Santhoshkumar T, Jayaseelan C, Rajakumar G (2013) Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitol Res 112(12):4105–4112

    Article  PubMed  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224

    Google Scholar 

  • Mohammadi R, Khoobdel M, Negahban M, Khani S (2019) Nanoemulsified Mentha piperita and Eucalyptus globulus oils exhibit enhanced repellent activities against Anopheles stephensi. Asian Pac J Trop Med 12(11):520–527

    Article  CAS  Google Scholar 

  • Mohd Narawi M, Chiu HI, Yong YK, Mohamad Zain NN, Ramachandran MR, Tham CL, Samsurrijal SF, Lim V (2020) Biocompatible nutmeg oil-loaded nanoemulsion as phyto-repellent. Front Pharmacol 11:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morejon B, Pilaquinga F, Domenech F, Ganchala D, Debut A, Neira M (2018) Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol 2018:6917938

    Article  CAS  Google Scholar 

  • Murugan K, Anitha J, Suresh U, Rajaganesh R, Panneerselvam C, Aziz AT, Tseng LC, Kalimuthu K, Alsalhi MS, Devanesan S, Nicoletti M, Sarkar SK, Benelli G, Hwang JS (2017a) Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia 797:335–350

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015b) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253

    Article  PubMed  Google Scholar 

  • Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015c) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654

    Article  PubMed  Google Scholar 

  • Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Saleh Alsalhi M, Devanesan S, Subramaniam J, Rajaganesh R, Wei H, Suresh K, Nicoletti M, Benelli G (2016b) Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol Res 115:1085–1096

    Article  PubMed  Google Scholar 

  • Murugan K, Dinesh D, Paulpandi M, Dakhellah Meqbel Althbyani A, Subramaniam J, Madhiyazhagan P, Wang L, Suresh U, Mahesh Kumar P, Mohan J, Rajaganesh R, Wei H, Kalimuthu K, Parajulee MN, Mehlhorn H, Benelli G (2015a) Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:4349–4361

    Article  PubMed  Google Scholar 

  • Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G (2015d) Aristolochia indica green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci 102:127–135

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Nataraj D, Jaganathan A, Dinesh D, Jayashanthini S, Samidoss CM, Paulpandi M, Panneerselvam C, Subramaniam J, Aziz AT, Nicoletti M, Kumar S, Higuchi A, Benelli G (2017b) Nanofabrication of graphene quantum dots with high toxicity against malaria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells: impact on predation of non-target tadpoles, odonate nymphs and mosquito fishes. J Clust Sci 28:393–411

    Article  CAS  Google Scholar 

  • Murugan K, Nataraj D, Madhiyazhagan P, Sujitha V, Chandramohan B, Panneerselvam C, Dinesh D, Chandirasekar R, Kovendan K, Suresh U, Subramaniam J, Paulpandi M, Vadivalagan C, Rajaganesh R, Wei H, Syuhei B, Aziz AT, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016a) Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol Res 115:1071–1083

    Article  PubMed  Google Scholar 

  • Naik BR, Gowreeswari GS, Singh Y, Satyavathi R, Daravath SS, Reddy PR (2014) Bio-synthesis of silver nanoparticles from leaf extract of Pongamia pinnata as an effective larvicide on dengue vector Aedes albopictus (Skuse) (Diptera: Culicidae). Adv Entomol 2(2):45433

    Article  Google Scholar 

  • Nalini M, Lena M, Sumathi P, Sundaravadivelan C (2017) Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti. Egypt J Basic Appl Sci 4:212–218

    Google Scholar 

  • Navayan A, Moghimipour E, Khodayar MJ, Vazirianzadeh B, Siahpoosh A, Valizadeh M, Mansourzadeh Z (2017) Evaluation of the mosquito repellent activity of nano-sized microemulsion of Eucalyptus globulus essential oil against Culicinae. Jundishapur J Nat Pharmaceut Prod 12(4):e55626

    Google Scholar 

  • Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech 10:1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AE, Duarte JL, Amado JRR, Cruz RAS, Rocha CF, Souto RNP, Ferreira RMA, Santos K, Conceição EC, Oliveira LAR, Kelecom A, Fernandes CP, Carvalho JCT (2016) Development of a larvicidal nanoemulsion with Pterodon emarginatus vogel oil. PLoS One 11:e0145835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM (2017) Preparation and optimization nanoemulsion of tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crop Prod 109:214–219

    Article  CAS  Google Scholar 

  • Osanloo M, Sereshti H, Sedaghat MM, Amani A (2018) Nanoemulsion of dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res 25:6466–6473

    Article  CAS  Google Scholar 

  • Ostertag F, Weiss J, McClements DJ (2012) Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J Colloid Interface Sci 388:95–102

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecilia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110(5):1815–1822

    Article  PubMed  Google Scholar 

  • Ping G, Huimin L, Xiaoxiao H et al (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18(28):285604

    Article  CAS  Google Scholar 

  • Postma NS, Crommelin DJ, Eling WM, Zuidema J (1999) Treatment with liposome-bound recombinant human tumor necrosis factor-alpha suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice. J Pharmacol Exp Ther 288(1):114–120

    CAS  PubMed  Google Scholar 

  • Prakash S, Gavendra S, Soni N, Sweta S (2010) Pathogenicity of Fusarium oxysporum against the Larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in Laboratory. Parasitol Res 107(3):651–655

    Article  PubMed  Google Scholar 

  • Priya S, Murugan K, Priya A, Dinesh D, Panneerselvam C, Devi GD, Chandramohan B, Kumar PM, Barnard DR, Xue R-D, Hwang J-S, Nicoletti M, Chandrasekar R, Amsath A, Bhagooli R, Wei H (2014) Green synthesis of silver nanoparticles using calotropis gigantea and their potential mosquito larvicidal property. Int J Pure Appl Zool 2(2):128–137

    Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Rahman K, Khan SU, Fahad S, Chang MX, Abbas A, Khan WU, Haq ZU, Nabi G, Khan D (2019) Nano-biotechnology: a new approach to treat and prevent malaria. Int J Nanomedicine 14:1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 118(3):196–203

    Article  CAS  PubMed  Google Scholar 

  • Rajasekharreddy P, Rani PU (2014) Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng C 39(1):203–212

    Article  CAS  Google Scholar 

  • Raman N, Sudharsan S, Veerakumar V, Pravin N, Vithiy K (2012) Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 96:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan A, Shanmugam V, Rghuchander T, Samiyappan R (2002) Induction of systematic resistance in ragi against blast disease by Pseudomonas fluorescens. Ann PC Port Soc 10:313–318

    Google Scholar 

  • Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88

    Article  CAS  PubMed  Google Scholar 

  • Ramar G, Suman T, Elangomathavan R, Jeyasankar A (2014) Larvicidal activity of biologically synthesised silver nanoparticles against dengue vector Aedes aegypti (Culicidae). Discovery 9(23):65–68

    Google Scholar 

  • Ramar M, Manonmani P, Arumugam P, Kannam SK, Erusan RR, Baskaran N, Murugan K (2017) Nano-insecticidal formulations from essential oil (Ocimum sanctum) and fabricated in filter paper on adult of Aedes aegypti and Culex quinquefasciatus. J Entomol Zool 5:1769–1774

    Google Scholar 

  • Ramasamy R, Rajan R, Velmurugan R (2014) Development of mosquito repellent fabrics using Vitex negundo loaded nanoparticles. Malaya J Biosci 1:19–23

    CAS  Google Scholar 

  • Rawani A (2017) Mosquito larvicidal activity of green silver nanoparticle synthesized from extract of bud of Polianthes tuberosa L. Int J Nanotechnol Appl 11(1):17–28

    Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2013a) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622

    Article  CAS  PubMed  Google Scholar 

  • Rayner JC (2009) The merozoite has landed: reticulocyte-binding-like ligands and the specificity of erythrocyte recognition. Trends Parasitol 25(3):104–106

    Article  CAS  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(3):981–990

    Article  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38

    Article  CAS  PubMed  Google Scholar 

  • Roopan SM, Rohit MG, Rahuman A, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    Article  CAS  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Sap-Iam N, Homkilnchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation-mediated silver nanoparticles as mosquito larvicides. J Appl Sci 10:3132–3136

    Article  CAS  Google Scholar 

  • Saravanan P, Chandramohan G, Mariajancyrani J, Shanmugasundaram P (2013) Extraction and application of eco-friendly natural dye obtained from leaves of Acalypha indica Linn. on cotton fabric. Int J Environ Sci 2:1–5

    Google Scholar 

  • Sareen SJ, Pillai RK, Chandramohanakumar N, Balagopalan M (2012) Larvicidal potential of biologically synthesised silver nanoparticles against Aedes Albopictus. Res J Recent Sci 1:52–56

    CAS  Google Scholar 

  • Saxena M, Sonkarb SK, Sarkar S (2013) Water soluble nanocarbons arrest the growth of mosquitoes. RSC Adv 3:22504–22508

    Article  CAS  Google Scholar 

  • Sharma A, Kumar S, Tripathi P (2019) A facile and rapid method for green synthesis of Achyranthes aspera stem extract-mediated silver nano-composites with cidal potential against Aedes aegypti L. Saudi J Biol Sci 26:698–670

    Article  CAS  PubMed  Google Scholar 

  • Sivapriyajothi S, Mahesh Kumar P, Kovendan K, Subramaniam J, Murugan K (2014) Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J Entomol Acarol Res 46:1787

    Article  Google Scholar 

  • Sogan N, Kapoor N, Kala S, Patanjali PK, Nagpal BN, Vikram K, Valecha N (2018) Larvicidal activity of castor oil Nanoemulsion against malaria vector Anopheles culicifacies. Int J Mosq Res 5(3):1–6

    Google Scholar 

  • Solè I, Solans C, Maestro A, González C, Gutiérrez JM (2012) Study of nanoemulsion formation by dilution of microemulsions. J Colloid Interface Sci 376:133–139

    Article  PubMed  CAS  Google Scholar 

  • Soni N, Prakash S (2010) Effect of Chrysosporium keratinophilum Metabolites against Culex quinquefasciatus after Chromatographic Purification. Parasitol Res 107(6):1329–1336

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2011) Aspergillus niger metabolites efficacies against the mosquito larval (Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti) population after column chromatography. Am J Microbiol 2(1):15–20

    Google Scholar 

  • Soni N, Prakash S (2012a) Larvicidal effect of Verticillium lecanii metabolites on Culex quinquefasciatus and Aedes aegypti larvae. J Trop Dis 2(3):220–224

    CAS  Google Scholar 

  • Soni N, Prakash S (2012b) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2012c) Entomopathogenic fungus generated nanoparticles for enhancement of efficacy in Culex quinquefasciatus and Anopheles stephensi. J Trop Dis 2(2):S356–S361

    CAS  Google Scholar 

  • Soni N, Prakash S (2012d) Fungal-mediated nano silver: an effective adulticide against mosquito. Parasitol Res 111:2091–2098

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2012e) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7

    Google Scholar 

  • Soni N, Prakash S (2013a) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanopart 2:125–132

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2013b) Fungus generated novel nanoparticles: a new prospective for mosquito control. Int J Recent Sci Res 4(10):481–1487

    Google Scholar 

  • Soni N, Prakash S (2014a) Microbial synthesis of spherical nanosilver and nanogold for mosquito control. Ann Microbiol 64(3):1099–1111

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2014b) Green nanoparticles for mosquito control. Sci World J 2014:496362

    Article  Google Scholar 

  • Soni N, Prakash S (2014c) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 113:4015–4022

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2016) Bio-nanoparticles: an eco-friendly approach for mosquito control and antimicrobial. J Nanotechnol Photon 105:138–152

    Google Scholar 

  • Sooresh A, Kwon H, Taylor R, Pietrantonio P, Pine M, Sayes CM (2011) Surface functionalization of silver nanoparticles: novel applications for insect vector control. ACS Appl Mater Interfaces 3:3779–3787

    Article  CAS  PubMed  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112(2):487–499

    Article  PubMed  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23:7543–7558

    Article  CAS  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquito fish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res Int 22:20067–20083

    Article  CAS  PubMed  Google Scholar 

  • Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113(3):875–880

    Article  PubMed  Google Scholar 

  • Suganya S, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397

    Article  PubMed  Google Scholar 

  • Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of Eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402

    Article  CAS  PubMed  Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325

    Article  PubMed  Google Scholar 

  • Sultana N, Raul PK, Goswami D, Das D, Islam S, Tyagi V, Das B, Gogoi HK, Chattopadhyaya P, Raju PS (2020) Bio-nanoparticle assembly: a potent on-site biolarvicidal agent against mosquito vectors. RSC Adv 10:9356–9368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suman TY, Elumali D, Kaleena PK, Rajasree SRR (2013) GCMS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crop Prod 47:239–245

    Article  CAS  Google Scholar 

  • Sundararajan B, Moola AK, Vivek K, Kumari BDR (2018) Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb Pathog 125:475–485

    Article  CAS  PubMed  Google Scholar 

  • Sundaravadivelan C, Nalini M (2012) Biolarvicidal effect of phyto-synthesized silver nanoparticles using Pedilanthus tithymaloides (L.) Poit stem extract against the dengue vector Aedes aegypti L. (Diptera; Culicidae). Asian Pac J Trop Biomed 2012:1–8

    Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21:4624–4633

    Article  CAS  Google Scholar 

  • Suresh G, Gunasekar PH, Kokila D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Siva GV (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A Mol Biomol Spectrosc 127(5):61–66

    Article  CAS  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nanoemulsions. Adv Colloid Interf Sci 108:303–318

    Article  CAS  Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. Proc Int Conf Prod Eng 8(2):18–23

    Google Scholar 

  • Tiwari DK, Behari J (2009) Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv Biol Res 3(3-4):89–95

    CAS  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112(12):4073–4085

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(5):1775–1785

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(6):2363–2373

    Article  PubMed  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Vino U, Durairaj B (2017) Nanoemulsion formulation useful as a new tool for mosquito control. Int J Curr Res 9(11):60267–60270

    Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  PubMed  Google Scholar 

  • WHO (2019) Japanese encephalitis fact sheet. https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis. Accessed on 15 May, 2020

  • WHO (2020) Malaria fact sheet. https://www.who.int/news-room/fact-sheets/detail/malaria. Accessed on 15 May, 2020

  • Wilke ABB, de Oliveira CR, Multini LC, Vidal PO, Wilk-da-Silva R, Carvalho GC, Marrelli MT (2016) Morphometric wing characters as a tool for mosquito identification. PLoS One 11(8):e0161643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkerson RC, Linton Y-M, Fonseca DM, Schultz TR, Price DC, Strickman DA (2015) Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One 10:e0133602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, B., Barik, T.K., Patel, A.K. (2020). Nanobiotechnology: A New Window for Management of Mosquito Vectors. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_9

Download citation

Publish with us

Policies and ethics