Skip to main content

Advertisement

Log in

Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 μg/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 μg/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV–Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective against A. stephensi (LC50, 109.94 μg/mL and LC90, 202.42 μg/mL) followed by A. aegypti LC50 (119.32 μg/mL and LC90, 213.84 μg/mL) and C. quinquefasciatus (LC50, 130.30 μg/mL and LC90, 228.20 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 21.92, and 41.07 μg/mL; A. aegypti had LC50 and LC90 values of 23.96, and 44.05 μg/mL; C. quinquefasciatus had LC50 and LC90 values of 26.13 and 47.52 μg/mL. These results suggest that the use of S. acuta synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target vector mosquitoes. This is the first report on the mosquito larvicidal activity of the plant aqueous extract and synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Rahuman A, Venkatesan P, GeethaK GG, Bagavan A, Kamaraj C (2008) Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitol Res 103:333–339

    Article  PubMed  Google Scholar 

  • Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Anjali CH, SudheerKhan S, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Ankamwar B, Damle C, Absar A, Mural S (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 10:1665–1671

    Article  CAS  Google Scholar 

  • Barik TK, Kamaraju R, Gowawami A (2012) Silica nanoparticles: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083

    Article  PubMed  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in northeastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Bigi MF, Torkomian VL, de Groote ST, Hebling MJ, Bueno OC, Pagnocea FC, Femandes JB, Vieira PC, da Silve MF (2004) Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Manag Sci 60(9):933–938

    Article  CAS  PubMed  Google Scholar 

  • Boyer S, Paris M, Jego S, Lympérière G, Ravanel P (2012) Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control 62:75–81

    Article  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  PubMed  Google Scholar 

  • Das PK, Pani SP, Krishnamoorthy K (2000) Prospects of elimination of lymphatic filariasis in India. ICMR Bull 32(5–6):41–54

    Google Scholar 

  • Dasari TP, Hwang HM (2010) The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408:5817–5823

    Article  CAS  PubMed  Google Scholar 

  • Dethloff GM, Naddy RB, Gorsuch JW (2007) Effects of sodium chloride on chronic silver toxicity to early life stages of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 26:1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 13:3–8

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman JM (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 29:3–6

    Google Scholar 

  • Elumalai EK, Prasad TN, Hemachandran J, Therasa VS, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554

    CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Gianotti RL, Bomblies A, Dafalla M, Issa-Arzika I, Duchemin JB, Eltahir EAB (2008) Efficacy of local neem extracts for sustainable malaria vector in an African village. Malar J 7:138

    Article  PubMed  Google Scholar 

  • Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) Hook. F. Benth (Rutaceae) against three mosquito species. Asian Pacific J Trop Med 3(11):874–877

    Article  CAS  Google Scholar 

  • Govindarajan M (2011) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pacific J Trop Med 4(2):106–111

    Article  CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R, Rajeswari M (2011) Larvicidal efficacy of Cassia fistula Linn. leaf extract against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Dis 1(4):295–298

    Article  Google Scholar 

  • Hay SI, Gething PW, Snow RW (2010) India’s invisible malaria burden. Lancet 376(9754):1716–1717

    Article  PubMed  Google Scholar 

  • Huang CP, Juang CP, Morehart K, Allen L (1990) The removal of copper (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res 24:433–439

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111(2):921–933

    Article  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Article  PubMed  Google Scholar 

  • Kager PA (2002) Malaria control: constraints and opportunities. Trop Med Int Health 7:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 03:325–331

    Article  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412

    Article  PubMed  Google Scholar 

  • Khanna S, Srivastava CN, Srivastava MM, Srivastava S (2003) Insecticidal activity of the plant Phyllanthus amarus against Tribolium castaneum. J Environ Biol 24(4):391–394

    PubMed  Google Scholar 

  • Kim J, Kim S, Lee S (2011) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicol 5(2):208–214

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22(2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109(2):461–472

    Article  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Kundu S, Mandal M, Ghosh SK, Pal T (2004) Photochemical deposition of SERS active silver nanoparticles on silica gel. J Photochem Photobiol A Chem 162:625–663

    Article  CAS  Google Scholar 

  • Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247

    CAS  PubMed  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • Manonmani A, Balaraman K (2001) A highly mosquitocidal Bacillus thuringiensis var. thompsoni. Curr Sci 80(6):779–781

    CAS  Google Scholar 

  • Manusadzianas L, Grigutyt R, Jurkonien S, Karitonas R, Sadauskas K, Férard JF, Cotelle S, Foucaud L (2009) Toxicity of zinc oxide nanoparticle suspensions to aquatic biota. METZ ISTA14: VIII 30–IX 04

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  PubMed  Google Scholar 

  • Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95(5):363–365

    Article  PubMed  Google Scholar 

  • Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461

    Article  CAS  PubMed  Google Scholar 

  • Mohana K (2010) Comparative efficacy of Bacillus thuringiensis israelensis crystal proteins in free and montmorillonite bound state as a larvicide in the ovitraps for Culex quinquefasciatus Say. J of Biopest 3(1):408–412

    CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B: Biointer 79(2):488–493

    Article  CAS  Google Scholar 

  • Naddy RB, Gorsuch JW, Rehner AB, McNerney GR, Bell RA, Kramer JR (2007) Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors. Aquat Toxicol 84:1–10

    Article  CAS  PubMed  Google Scholar 

  • Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Antiinflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3(6):208–217

    CAS  Google Scholar 

  • Parashar UK, Saxenaa PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4:159–166

    Google Scholar 

  • Paris M, David JP, Despres L (2011) Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicol 20:1184–1194

    Article  CAS  Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non target fish Poicillia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  • Ponarulselvam S, Panneerselvam C,Murugan K, Aarthi A, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacific J Trop Biomed 574–580

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of Ag NPs by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B: Biointer 82(1):152–159

    Article  CAS  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hitra against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340

    Article  CAS  PubMed  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  CAS  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Sastry M, Absar AA, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CWS, Kim Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf Biointerfaces 73:332–338

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5(3):432–444

    Article  PubMed  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  PubMed  CAS  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Su T, Mulla MS (1998) Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Control Assoc 14:204–209

    CAS  PubMed  Google Scholar 

  • Tian N, Liu Z, Huang J, Luo G, Liu S, Liu X (2007) Isolation and preparation of flavonoids from the leaves of Nelumbo nucifera Gaertn by preparative reversed-phase high-performance liquid chromatography. Sepu 25:88–92

    CAS  Google Scholar 

  • Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Turney K, Drake TJ, Smith JE, Tan W, Harriso WW (2004) Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun Mass Spectrom 18:2367–2374

    Article  CAS  PubMed  Google Scholar 

  • Vilchis-Nestora AR, Avalos-Borjaa M, Gómezb SA, Hernándezb JA, Olivasa A, Zepedaa TA (2009) Alternative bio-reduction synthesis method for the preparation of Au(AgAu)/SiO2–Al2O3 catalysts: oxidation and hydrogenation of CO. Appl Catal B Environ 90:64–73

    Article  CAS  Google Scholar 

  • Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotechnol 9(12):6828–6833

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  PubMed  Google Scholar 

  • Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides, CTD/WHO PES/IC/96.1. Geneva. p 69

  • World Health Organization (2004) First meeting of the Regional Technical Advisory Group on malaria, Manesar, Haryana, India. SEA-MAL 239:1–38

    Google Scholar 

  • World Health Organization (2005b) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

  • World Health Organization (2005a) Resolution WHA. 58.2. Malaria control. In: Fifty-eight World Health Assembly, Resolutions and Decisions Annex. Geneva

  • World Health Organization (2010) Dengue transmission research in WHO bulletin Zebit CPW (1984) Effect of some crude and Azadirachta-enriched neem (Azadirachta indica) seed kernel extracts of larvae of Aedes aegypti. Entomol Exp Appl 35:11–16

    Google Scholar 

  • Zebit CPW (1984) Effect of some crude and Azadirachta-enriched neem (Azadirachta indica) seed kernel extracts of larvae of Aedes aegypti. Entomol Exp Appl 35:11–16

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. (Mrs.) Selvi Sabhanayakam, Professor and Head of the Department of Zoology, Annamalai University for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veerakumar, K., Govindarajan, M. & Rajeswary, M. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112, 4073–4085 (2013). https://doi.org/10.1007/s00436-013-3598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3598-6

Keywords

Navigation