Skip to main content

Advertisement

Log in

Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV–vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7 %, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium zoxysporum. Colloids Surf B Biointerf 28:313–318

    Article  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • American Public Health Association (2005) Standard methods for the examination of water and wastewater. 21st Edition, American Public Health Association, American Water Works Association, and Water Pollution Control Federation. Washington DC, USA

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the Tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85

    Article  Google Scholar 

  • Benelli G (2015) The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-014-4252-7

    Google Scholar 

  • Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013a) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    Article  PubMed  Google Scholar 

  • Benelli G, Canale A, Conti B (2013b) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacologyonline 47:44–51

    Google Scholar 

  • Benelli G, Conti B, Garreffa R, Nicoletti M (2014) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113:933–940

    Article  PubMed  Google Scholar 

  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res. doi:10.1007/s00436-014-4183-3

    Google Scholar 

  • Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res. doi:10.1007/s00436-014-4267-0

    Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

  • Burfield T, Reekie SL (2005) Mosquitoes, malaria and essential oils. Int J Aroma 15:30–41

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Progr 22:577–583

  • Cho K, Park J, Osaka T, Park S (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electr Chim Acta 51:956–960

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (2006) M7-A7 methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 7th edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  • Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2014) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res 113:251–259

    Article  PubMed  Google Scholar 

  • Deng XH, Chen WX, He QM, Zhu LF (1999) Utilization and resources protection of Aloe vera L. var. chinensis (Haw.) Berger. J Plant Res Environ 8:26–30

    Google Scholar 

  • Desai M, Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, Newman RD (2007) Epidemiology and burden of malaria in pregnancy. Lan Inf Dis 7:93–104

    Article  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 13:3–8

    Google Scholar 

  • Duval L, Nerrienet E, Rousset D, Sadeuh Mba SA, Houze S, Fourment M, Le Bras J, Robert V, Ariey F (2009) Chimpanzee malaria parasites related to Plasmodium ovale in Africa. PLOS ONE 4:e5520

    Article  PubMed Central  PubMed  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman JM (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 29:3–6

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

    Book  Google Scholar 

  • Guerra CA, Snow RW, Hay SI (2006) A global assessment of closed forests, deforestation and malaria risk. Ann Trop Med Parasitol 100:189–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotech 18:104–105

    Google Scholar 

  • Jahn SAA (1988) Using Moringa seeds as coagulants in developing countries. J Am Wat Wks Assoc 80:43–50

    CAS  Google Scholar 

  • Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  • Judson CL (1967) Alteration of feeding behavior and fertility in Aedes aegypti by the chemosterilant Apholate. Entomol Exp Appl 10:387–393

    Article  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll Surf B Biointerf 76:50–56

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotech 85:1301–1309

    Article  CAS  Google Scholar 

  • Kundu S, Mandal M, Ghosh SK, Pal T (2004) Photochemical deposition of SERS active silver nanoparticles on silica gel. J Photo-chem Photobiol A Chem 162:625–663

    Article  CAS  Google Scholar 

  • Lee SE, Kim JE, Lee HS (2001) Insecticide resistance in increasing interest. Agric Chem Biotechnol 44:105–112

    CAS  Google Scholar 

  • Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al (2014) Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop 132S:S2–S11

    Article  Google Scholar 

  • Mahitha B, Deva Prasad Raju B, Dillip GR, Madhukar Reddy C, Mallikarjuna K, Manoj I, Priyanka S, Jayantha Rao K, Sushma JN (2011) Biosynthesis, characterization and antimicrobial studies of AgNPs extract from Bacopa monniera whole plant. Dig J Nanomat Biostruct 6:135–142

    Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224

    Google Scholar 

  • Mittal PK, Adak T, Subbarao SK (2005) Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of An. stephensi (Diptera: Culicidae) and its response to Bacillus thuringiensis var. israelensis. Curr Sci 89:442–443

    Google Scholar 

  • Murugan K, Vahitha R, Baruah I, Das SC (2003) Integration of botanicals and microbial pesticides for the control of filarial vector, Culex quinquefasciatus. Ann Med Entomol 12:11–23

    Google Scholar 

  • Murugan K, Hwang J-S, Kovendan K, Prasanna KK, Vasugi C, Naresh KA (2011) Use of plant products and copepod for the control of dengue vector, Aedes aegypti. Hydrobiologia 666:331–338

    Article  Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M (2015) Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-014-4265-2

    Google Scholar 

  • Naresh Kumar A, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2011) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vect Born Zoon Dis 12(3):262–268

    Google Scholar 

  • Natarajan K, Selvaraj S, Murty VR (2010) Microbial production of silver nanoparticle. Digest J Nanomat Biostruct 5:135–140

    Google Scholar 

  • Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM (2006) The effect of gain and absorption on surface plasmon in metal nanoparticles. Appl Phys B 86:458–460

    Google Scholar 

  • Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–S519

    Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3:208–217

    CAS  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microb Infect 11:1177–1185

    Article  CAS  Google Scholar 

  • Priyadarshini A, Murugan K, Panneerselvam C, Ponarulselvam S, Jiang-Shiou H, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006

    Article  PubMed  Google Scholar 

  • Raghavendra K, Barik TK, Niranjan Reddy BP, Sharma P, Dash AP (2011) Malaria vector control: from past to future. Parasitol Res 108:757–779

    Article  PubMed  Google Scholar 

  • Rajasekaran S, Sivagnanam K, Subramanian S (2005) Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J Pharm Pharmacol 57:241–246

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 118(3):196–203

    Article  Google Scholar 

  • Reynolds T, Dweck AC (1999) A.vera leaf-gel: a review update. J Ethnopharmacol 68:3–37

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Appl Sci 10:3132–3136

    Article  CAS  Google Scholar 

  • Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Schwarz D (2000) Water clarification using Moringa oleifera. Gate Information Service, http://www.gtz.de/gate/gateid.afp

  • Schulz CR, Okun DA (1984) Surface water treatment for communities in developing countries. John Wiley & Sons, New York, USA

    Google Scholar 

  • Sereemaspun A, Hongpiticharoen P, Rojanathanes R, Maneewattanapinyo P, Ekgasit S, Warisnoicharoen W (2008) Inhibition of human cytochrome P450 enzymes by metallic nanoparticles: a preliminary to nanogenomics. Int J Pharmacol 4:492–495

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2010) Phytoextract-induced developmental deformities in malaria vector. Biores Tech 97:1599–1604

    Article  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc Biosyst Eng 32:79–84

    Article  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res doi:10.1007/s00436-015-4339-9

  • Stuart BH (2002) Polymer analysis. John Wiley & Sons, London

    Google Scholar 

  • Swanner Y, Meunier A (2014) Tropical diseases: a practical guide for medical practitioners and students. Oxford University Press, Oxford

    Google Scholar 

  • Turney K, Drake TJ, Smith JE, Tan W, Harriso WW (2004) Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Comm Mass Spec 18:2367–2374

    Article  CAS  Google Scholar 

  • Urch D (1999) Aloe vera nature’s gift. Blackdown Publ, United Kingdom

    Google Scholar 

  • Villani F, White GB, Curtis CF, Miles SJ (1983) Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex of Culex pipiens L. (Diptera: Culicidae). Bull Entomol Res 73:153–170

    Article  CAS  Google Scholar 

  • Waller GR, Mangiafico S, Ritchey CR (1978) A chemical investigation of Aloe barbadensis Miller. Proc Oklahoma Acad Sci 58:69–76

    CAS  Google Scholar 

  • Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  PubMed  Google Scholar 

  • WHO (2013) World Malaria Report 2013. Switzerland, Geneva

    Google Scholar 

Download references

Acknowledgments

Giovanni Benelli is supported by Mis. 124 MODOLIVI Grant. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, D., Murugan, K., Madhiyazhagan, P. et al. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?. Parasitol Res 114, 1519–1529 (2015). https://doi.org/10.1007/s00436-015-4336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4336-z

Keywords

Navigation