Skip to main content

Nanotechnology’s Promising Role in the Control of Mosquito-Borne Disease

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

Nanotechnology is a pioneering field among the diverse fields of science, including insect pest management. Mosquito-borne diseases have an important public health issues in morbidity and mortality worldwide. They include malaria, yellow fever, Japanese encephalitis, filariasis and dengue fever. The development of insecticide-resistant mosquito species is becoming a challenging risk factor. To resolve this, nanoparticles provide a new direction to control vector and vector borne diseases. Nanoparticles have an effective similar to that of chemical insecticides against the larva and mosquitoes. Due to this biogenic nature as well as the eco-friendly approach and host specificity actions, the use of nanomaterials becomes effective. Recently, many innovative techniques have been introduced in nanobiotechnology, including green nanotechnology, the development of tissue-specific nanopores and nanobiosensor. Thus, they have opened the door to a safe and environmentally friendly clinical approach. According to this chapter focus was on the different nanoparticle synthesis and their target basic mechanisms of malarial parasite and arbovirus control. Nanoparticles coated with drug are used for control release, biocompatibility and stability. Beside these, different types of nanoparticles have shown a potent ability to control mosquito-borne infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87

    Google Scholar 

  • Adu-Bobie J et al (2003) Two years into reverse vaccinology. Vaccine. Elsevier, 21(7–8):605–610

    Article  PubMed  Google Scholar 

  • Ahmed T et al (2019) Climatic conditions: conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. Int J Environ Res Public Health. Multidisciplinary Digital Publishing Institute, 16(17):3165

    Article  PubMed Central  Google Scholar 

  • Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. Dove Press, 10:483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alto BW, Juliano SA (2001) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol. Oxford University Press Oxford, UK, 38(5):646–656

    Article  CAS  PubMed  Google Scholar 

  • Anusha JR et al (2019) Electrochemical biosensing of mosquito-borne viral disease, dengue: a review. Biosens Bioelectron 142:111511

    Article  CAS  PubMed  Google Scholar 

  • Azarudeen RMST et al (2017) Single-step biofabrication of silver nanocrystals using Naregamia alata: a cost effective and eco-friendly control tool in the fight against malaria, Zika virus and St. Louis encephalitis mosquito vectors. J Clust Sci. Springer, 28(1):179–203

    Article  CAS  Google Scholar 

  • Ali A, Nayar JK, Xue R-D (1995) Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. J Am Mosquito Control Associ 11(1):72–76

    Google Scholar 

  • Ali MYS, Ravikumar S, Beula JM (2013) Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pac J Trop Dis 3(3):196–201

    Google Scholar 

  • Baird JK (2000) Resurgent malaria at the millennium. Drugs. Springer, 59(4):719–743

    Article  CAS  PubMed  Google Scholar 

  • Baird JK, Hoffman SL (2004) Primaquine therapy for malaria. Clin Infect Dis. The University of Chicago Press, 39(9):1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Baird JK, Rieckmann KH (2003) Can primaquine therapy for vivax malaria be improved? Trends Parasitol. Elsevier, 19(3):115–120

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian C, Banu AN (2016) Microbial Nanoparticles as Mosquito Control Agents. In: Nanoparticles in the fight against parasites. Springer, pp 81–98

    Chapter  Google Scholar 

  • Banu AN, Balasubramanian C (2014a) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. Springer, 113(8):2869–2877

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C (2014b) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res. Springer, 113(10):3843–3851

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. Springer 113(1):311–316

    Article  PubMed  Google Scholar 

  • Baruah UK et al (2017) Malaria treatment using novel nano-based drug delivery systems. J Drug Target. Taylor & Francis, 25(7):567–581

    Article  CAS  PubMed  Google Scholar 

  • Beatty ME et al (2007) Estimating the total world population at risk for locally acquired dengue infection. In: American journal of tropical medicine and hygiene. Amer Soc Trop Med & Hygiene 8000 Westpark DR, STE 130, Mclean, VA 22101 USA, p 221

    Google Scholar 

  • Benelli G (2016a) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol. Elsevier, 95:58–68

    Article  CAS  Google Scholar 

  • Benelli G et al (2016) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res. Springer, 115(6):2131–2137

    Article  PubMed  Google Scholar 

  • Benelli G (2016b) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. Springer, 115(1):23–34

    Article  PubMed  Google Scholar 

  • Benelli G et al (2018) Mosquito control with green nanopesticides: towards the one health approach? A review of non-target effects. Environ Sci Pollut Res. Springer, 25(11):10184–10206

    Article  CAS  Google Scholar 

  • Benelli G, Caselli A, Canale A (2017) Nanoparticles for mosquito control: challenges and constraints. J King Saud Univ Sci. Elsevier, 29(4):424–435

    Article  Google Scholar 

  • Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based “lure and kill” approach? J Clust Sci. Springer, 28(1):287–308

    Article  CAS  Google Scholar 

  • Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. Chapter

    Book  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot. Nature Publishing Group, 58(1):1–26

    Article  CAS  Google Scholar 

  • Bhatt S et al (2013) The global distribution and burden of dengue. Nature. Nature Publishing Group, 496(7446):504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Basu P, Sajal Bhattacharya C (2016) The southern house mosquito, Culex quinquefasciatus: profile of a smart vector. J Entomol Zool Stud 4(2):73–81

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Boeuf P et al (2016) The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact. BMC Med. BioMed Central, 14(1):1–9

    Article  Google Scholar 

  • Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protect Res 57(2):194–200, https://doi.org/10.1515/jppr-2017-0026

  • Campos EVR et al (2020) Recent developments in nanotechnology for detection and control of Aedes aegypti-borne diseases. Front Bioeng Biotechnol. Frontiers, 8:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra G et al (2008) Mosquito control by larvivorous fish. Indian J Med Res 127(1):13

    CAS  PubMed  Google Scholar 

  • Coelho L et al (2018) Photostabilization strategies of photosensitive drugs. Int J Pharm. Elsevier, 541(1–2):19–25

    Article  CAS  PubMed  Google Scholar 

  • Crean C et al (2011) Polyaniline nanofibres as templates for the covalent immobilisation of biomolecules. Synth Met. Elsevier, 161(3–4):285–292

    Article  CAS  Google Scholar 

  • Denholm I, Devine GJ, Williamson MS (2002) Insecticide resistance on the move. Science. American Association for the Advancement of Science, 297(5590):2222–2223

    Article  CAS  PubMed  Google Scholar 

  • Dennis E et al (2015) Utilizing nanotechnology to combat malaria. J Infect Dis Ther. OMICS International

    Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis. Elsevier, 3(3):174–179

    Article  CAS  PubMed Central  Google Scholar 

  • Durán N et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. Springer, 3(1):8

    Article  Google Scholar 

  • Eskandari F et al (2014) Immunoliposomes containing Soluble Leishmania Antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis. Exp Parasitol. Elsevier, 146:78–86

    Article  CAS  PubMed  Google Scholar 

  • Firouzmand H et al (2013) Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop. Elsevier, 128(3):528–535

    Article  CAS  PubMed  Google Scholar 

  • Fortina P et al (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol. Elsevier, 23(4):168–173

    Article  CAS  PubMed  Google Scholar 

  • Fotoran WL et al (2019) A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine. Elsevier, 22:102099

    Article  CAS  PubMed  Google Scholar 

  • Frezza TF et al (2013) Liposomal-praziquantel: efficacy against Schistosoma mansoni in a preclinical assay. Acta Trop. Elsevier, 128(1):70–75

    Article  CAS  PubMed  Google Scholar 

  • Garske T et al (2014) Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. Public Library of Science, 11(5):e1001638

    Article  PubMed  PubMed Central  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy. Elsevier, 83(1–4):132–140

    Article  CAS  Google Scholar 

  • Gomes GM et al (2019) Encapsulation of N, N-diethyl-meta-toluamide (DEET) via miniemulsion polymerization for temperature controlled release. J Appl Polym Sci. Wiley Online Library, 136(9):47139

    Article  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Nanobiotechnology Applications in Plant Protection (eds. Abd-Elsalam K and Prasad R), Springer International Publishing AG 247–266

    Google Scholar 

  • Hamaidia K, Soltani N (2014) Laboratory evaluation of a biorational insecticide, kinoprene, against Culex pipiens larvae: Effects on growth and development. Annual Res Rev Biol. 2263–2273

    Google Scholar 

  • Ismail M et al (2018) Liposomes of dimeric artesunate phospholipid: a combination of dimerization and self-assembly to combat malaria. Biomaterials. Elsevier, 163:76–87

    Article  CAS  PubMed  Google Scholar 

  • Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci. Springer, 40(20):5407–5411

    Article  CAS  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3):682-689. https://doi.org/10.1007/s10971-018-4666-2

  • Kalat SAM et al (2014) Use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice. Exp Parasitol. Elsevier, 143:5–10

    Article  PubMed  Google Scholar 

  • Kayalvizhi T, Ravikumar S, Venkatachalam P (2016) Green synthesis of metallic silver nanoparticles using Curculigo orchioides rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. J Environ Eng. American Society of Civil Engineers, 142(9):C4016002

    Article  Google Scholar 

  • Khan SU et al (2018) Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine. Dove Press, 13:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SU et al (2019) Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: a focus on honey bee pathogen. Saudi J Biol Sci. Elsevier, 26(7):1815–1834

    Article  CAS  PubMed  Google Scholar 

  • Kilama W, Ntoumi F (2009) Malaria: a research agenda for the eradication era. Lancet. Elsevier, 374(9700):1480–1482

    Article  PubMed  Google Scholar 

  • Kolluri N, Klapperich CM, Cabodi M (2018) Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip. Royal Society of Chemistry, 18(1):75–94

    Article  CAS  Google Scholar 

  • Kovendan K et al (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd.(Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston.(Diptera: Culicidae). Parasitol Res. Springer, 110(1):195–203

    Article  PubMed  Google Scholar 

  • Krishnaswamy K, Orsat V (2017) Sustainable delivery systems through green nanotechnology. In: Nano-and microscale drug delivery systems. Elsevier, pp 17–32

    Chapter  Google Scholar 

  • Kumar CV, McLendon GL (1997) Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate. Chem Mater. ACS Publications, 9(3):863–870

    Article  CAS  Google Scholar 

  • Kumar H et al (2020) Flower-based green synthesis of metallic nanoparticles: applications beyond fragrance. Nanomaterials 10(4):766

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar S et al (2012) Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionano Sci 2(4):227–250

    Article  Google Scholar 

  • Lee S-W et al (2014) Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials. Multidisciplinary Digital Publishing Institute, 7(12):7781–7798

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC, Chadee DD, Charlwood J, Dabire RK, Djogbenou L (2014) Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop. 132:S2–S11

    Google Scholar 

  • Lorenz ES (2007) Potential health effects of pesticides. Pennsylvania State University, Pennsylvania

    Google Scholar 

  • Macdonald IDG, Smith WE (1996) Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir. ACS Publications, 12(3):706–713

    Article  CAS  Google Scholar 

  • Moon JJ et al (2012) Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One. Public Library of Science, 7(2)

    Google Scholar 

  • Milam CD, Farris JL, Wilhide JD (2000) Evaluating mosquito control pesticides for effect on target and nontarget organisms. Arch Environ Contamin Toxicol 39(3):324–328

    Google Scholar 

  • Nakache E et al (2000) Biopolymer and polymer nanoparticles and their biomedical applications. In: Handbook of nanostructured materials and nanotechnology. Elsevier, pp 577–635

    Chapter  Google Scholar 

  • Nogueira Barradas T et al (2016) Polymer-based drug delivery systems applied to insects repellents devices: a review. Curr Drug Deliv. Bentham Science Publishers, 13(2):221–235

    Article  Google Scholar 

  • Oliveira CB et al (2014) Liposomes produced by reverse phase evaporation: in vitro and in vivo efficacy of diminazene aceturate against Trypanosoma evansi. Parasitology. Cambridge University Press, 141(6):761–769

    Article  CAS  PubMed  Google Scholar 

  • Omwoyo WN et al (2014) Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine. Dove Press, 9:3865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panneerselvam C et al (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res. Springer, 115(3):997–1013

    Article  PubMed  Google Scholar 

  • Pashchenko O et al (2018) A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infect Dis. ACS Publications, 4(8):1162–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Baek K-H (2014, 2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomat

    Google Scholar 

  • Patterson J, Sammon M, Garg M (2016) Dengue, Zika and chikungunya: emerging arboviruses in the New World. West J Emerg Med. California Chapter of the American Academy of Emergency Medicine (Cal/AAEM), 17(6):671

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessoa LZ d S et al (2018) Nanosuspension of quercetin: preparation, characterization and effects against Aedes aegypti larvae. Rev Bras. SciELO Brasil, 28(5):618–625

    CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R (2019a) Microbial Nanobionics: Basic Research and Applications. Springer International Publishing (ISBN 978-3-030-16534-5) https://www.springer.com/gp/book/9783030165338

  • Prasad R (2019b) Microbial Nanobionics: State of Art. Springer International Publishing (ISBN 978-3-030-16383-9) https://www.springer.com/gp/book/9783030163822

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK 53–70

    Google Scholar 

  • Prasad R, Jha A, Prasad K (2018b) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Kumar M, Wang S (2018a) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656

  • Prasad R, Kumar V, Kumar M, Choudhary D (2019) Nanobiotechnology in Bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5) https://www.springer.com/gp/book/9783030170608

  • Priye A et al (2017) A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep. Nature Publishing Group, 7(1):1–11

    Article  Google Scholar 

  • Parthiban E, Manivannan N, Ramanibai R, Mathivanan N (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:e00297.

    Google Scholar 

  • Pandey V, Agrawal V, Raghavendra K, & Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102(1):171–174

    Google Scholar 

  • Qiu L, Jing N, Jin Y (2008) Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm. Elsevier 361(1–2):56–63

    Article  CAS  Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov. Nature Publishing Group 3(9):785–796

    Article  CAS  PubMed  Google Scholar 

  • Rashid JIA, Yusof NA (2018) Laboratory diagnosis and potential application of nucleic acid biosensor approach for early detection of dengue virus infections. Biosci Biotechnol Res Asia 15(2):245–255

    Article  Google Scholar 

  • Rong Z et al (2019) Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta. Elsevier, 1055:140–147

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal G, Nivetha A, Sundar M, Panneerselvam T, Murugesan S, Parasuraman P, Kumar S, Ilango S, Kunjiappan S (2021) Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications. Heliyon:e07360

    Google Scholar 

  • Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine. Elsevier, 3(1):20–31

    Article  CAS  PubMed  Google Scholar 

  • Santos-Magalhães NS, Mosqueira VCF (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. Elsevier, 62(4–5):560–575

    Article  PubMed  Google Scholar 

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased Nanotechnology for Green Applications. Springer International Publishing (ISBN 978-3-030-61985-5) https://www.springer.com/gp/book/9783030619848

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5(2):427–432

    Google Scholar 

  • Schaffner F, Medlock JM, Bortel V, W. (2013) Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect. Elsevier, 19(8):685–692

    Article  CAS  PubMed  Google Scholar 

  • Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Therap Adv Vaccines. SAGE Publications Sage UK: London, England, 2(6):159–182

    Article  CAS  Google Scholar 

  • Selvan SM et al (2018) Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnol. IET, 12(8):1042–1046

    Article  Google Scholar 

  • Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J. Federation of American Societies for Experimental Biology, 20(9):1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Sethi RS (1994) Transducer aspects of biosensors. Biosens Bioelectron. Elsevier, 9(3):243–264

    Article  CAS  Google Scholar 

  • Shakeel K et al (2019) Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res. Taylor & Francis, 29(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Shargh VH et al (2012) Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol Res. Springer, 111(1):105–114

    Article  Google Scholar 

  • Siddhardha B et al (2012) Dubey and Basaveswara Rao MV2 in vitro antimicrobial and larvicidal spectrum of certain bioactive fungal extracts. Int J Res Pharm Biomedical Sci 3:115–155

    Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J (2020) Biological Biosensors for Monitoring and Diagnosis. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial Biotechnology: Basic Research and Applications. Springer Nature Singapore 317–336

    Google Scholar 

  • Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitolo. Dove Press, 2:1–7

    Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Scientific Research Publishing

    Google Scholar 

  • Sowndarya P, Ramkumar G, Shivakumar MS (2017) Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells Nanomed Biotechnol. Taylor & Francis, 45(8):1490–1495

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21(2):245–265

    Google Scholar 

  • Staples JE, Fischer M (2014) Chikungunya virus in the Americas—what a vectorborne pathogen can do. N Engl J Med. Mass Medical Soc, 371(10):887–889

    Article  PubMed  PubMed Central  Google Scholar 

  • Suryawanshi RK et al (2015) Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int J Cosmet Sci. Wiley Online Library, 37(1):98–107

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology Res 109(3):823–831

    Google Scholar 

  • Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. In Environmental sustainability. Springer, (pp 49–63)

    Google Scholar 

  • Tripathy S et al (2012) Synthesis, characterization of chitosan–tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach. Int J Pharm. Elsevier, 434(1–2):292–305

    Article  CAS  PubMed  Google Scholar 

  • Tripathy S et al (2013) The impact of nanochloroquine on restoration of hepatic and splenic mitochondrial damage against rodent malaria. J Nanopart. Hindawi Publishing Corporation, 2013

    Google Scholar 

  • Vinayagam S et al (2018) DNA-triangular silver nanoparticles nanoprobe for the detection of dengue virus distinguishing serotype. Spectrochim Acta A Mol Biomol Spectrosc. Elsevier, 202:346–351

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Lymphatic Filariasis “Fact Sheet N 102.” World Health Organization: Geneva, Switzerland

    Google Scholar 

  • Yen CW, de Puig H, Tam JO, Gómez-Márquez J, Bosch I, Hamad-Schifferli K, Gehrke L (2015) Lab Chip

    Google Scholar 

  • Yen CW, de Puig H, Tam JO, Gómez-Márquez J, Bosch I, Hamad-Schifferli K, Gehrke L (2015) Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab on a Chip, 15(7):1638–1641

    Google Scholar 

  • Zhang X-Q et al (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev. Elsevier, 64(13):1363–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopalan, R., Sundarraj, S., Anand, K., Ilango, S. (2022). Nanotechnology’s Promising Role in the Control of Mosquito-Borne Disease. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_11

Download citation

Publish with us

Policies and ethics