Skip to main content
Log in

Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study activity of silver nanoparticles (AgNPs) synthesized using Plumeria rubra plant latex against second and fourth larval instar of Aedes aegypti and Anopheles stephensi was determined. Range of concentrations of synthesized AgNps (10, 5, 2.5, 1.25, 0.625, 0.3125 ppm) and aqueous crude latex (1,000, 500, 250, 125, 62.50, 31.25 ppm) were tested against larvae of A. aegypti and A. Stephensi. The synthesized AgNps from P. rubra latex were highly toxic than crude latex extract in both mosquito species. The LC50 values for second and fourth larval instars after 24 h of crude latex exposure were 1.49, 1.82 ppm against A. aegypti and 1.10, 1.74 ppm against A. stephensi respectively. These figures were 181.67, 287.49 ppm against A. aegypti and 143.69, 170.58 ppm against A. stephensi respectively for crude latex extract. The mortality rates were positively correlated with the concentration of AgNPs. The characterization studies of synthesized AgNPs by UV–Vis spectrophotometry, transmission electron microscopy (TEM), Particle size analysis (PSA) and zeta potential confirmed the spherical shape and size (32–200 nm) of silver nanoparticles alongwith stability. Toxicity studies carried out against non-target fish species Poecilia reticulata, the most common organism in the habitats of A. aegypti and A. stephensi showed no toxicity at LC50 and LC90 doses of the AgNPs. This is the first report on mosquito larvicidal activity of latex synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Eco Entomol 18:265–266

    CAS  Google Scholar 

  • Abe F, Chen RF, Yamauchi T (1988) Studies on the constituents of Plumeria. Part I. Minor iridoids from the roots of Plumeria acutifolia. Chem Pharma Bull 36(8):2784–2789

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318. doi:10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  PubMed  CAS  Google Scholar 

  • Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf, A Physicochem Eng Asp 168:87–96

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge, pp 76–80.

    Google Scholar 

  • Guevara AP, Amor E, Russell G (1996) Antimutagens from Plumeria acuminata. Mutat Res 361(2–3):67–72

    PubMed  CAS  Google Scholar 

  • Huang MY, Zhou GX, Jin QX, Xu ZX (2005) The constituents of volatile oil from Plumeria rubra L. var. acutifolia Bailey. Journal of Anhui TCM College 24(4):50–51

    CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011a) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant. Tinospora cordifolia Miers. Parasitol Res. doi:10.1007/s00436-010-2242-y

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2011b) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res. doi:10.1007/s00436-011-2473-6

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Lin JM, Xu YC, Feng FY, Xia PG, Wu Z (2001) GC-MS analysis of supercritical extraction of Plumeria rubra. J of Chin Med Mat 24(4):276–277

    Google Scholar 

  • Lopes KLB, Thadeo M, Azevedo AA, Soares AA, Meira RMSA (2009) Articulated laticifers of vegetative organs Mandevilla atroviolaceae (Apocynaceae, Apocynoideae). Botany 87:202–209

    Article  Google Scholar 

  • Marimuthu S, Rahuman AA, Govindasamy R, Thirunavukkarasu S, Arivarasan VK, Chidambaram J, Asokan B, Zahir AA, Elango G, Chinnaperumal K (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. doi:10.1007/s00436-010-2212-4

  • Markouk M, Bekkouche K, Larhsini M, Bousaid M, Lazrek HB (2000) Evaluation of some Moroccean medical plant extracts for larvicidal activity. J Ethnopharmacol 73:293–297

    Article  PubMed  CAS  Google Scholar 

  • Nishibe S, Hisada S, Inagaki I (1971) Cyclitols of Ochrosia nakaiana, Plumeria acutifolia and Strophanthus gratus. Phytochem 10(10):2543

    Article  CAS  Google Scholar 

  • Patil SV, Patil CD, Salunke BK, Salunkhe RB (2010) Larvicidal efficacy of six plants against two mosquito species Aedes aegypti and Anopheles stephensi. Trop Biomed 27(3):360–365

    PubMed  CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011a) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against A. aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res 108(5):1253–1263

    Article  PubMed  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011b) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res. doi:10.1007/s00436-011-2365-9

  • Rahman SJ, Sharma SK, Rajagopal (1989) Manual on entomological surveillance of vector borne diseases. NICD, New Delhi

    Google Scholar 

  • Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    Article  PubMed  CAS  Google Scholar 

  • Ramos MV, Bandeira GP, Freitas CDT, Nogueira NAP, Alencar NMN, Sousa PAS, Carvalho AFFU (2006) Latex constituents from C. procera (Ait.) R.Br. display toxicity upon egg hatching and larvae of Aedes aegypti (Linn). Brazil Mem Inst Oswaldo Cruz 101:503–510

    Article  Google Scholar 

  • Ramos MV, Freitas CDT, Stanisçuaski F, Macedo LLP, Sales MP, Sousa DP, Carlini CR (2007) Performance of distinct crop pests reared on diets enriched with latex proteins from Calotropis procera: role of laticifer proteins in plant defense. Plant Sci 173:349–357

    Article  CAS  Google Scholar 

  • Ramos MV, Pereira DA, Souza DP, Araújo ES, Freitas CDT, Cavalheiro MG, Matos MPV, Carvalho AFFU (2009) Potential of laticifer fluids for inhibiting Aedes aegypti larval development: evidence for the involvement of proteolytic activity. Brazil Mem Inst Oswaldo Cruz 104(6):805–812

    Article  CAS  Google Scholar 

  • Rangaswami S, Rao EV, Suryanarayana M (1961) Chemical examination of Plumenia acutifolia. Ind J Pharma 23:122–124

    CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res. doi:10.1007/s00436-011-2328-1

  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen w, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Applied Sci 10(23):3132–3136 ISSN 1812–5654

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2009) Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 106:171–176

    Article  PubMed  Google Scholar 

  • Thirunavukkarasu S, Rahuman AA, Govindasamy R, Marimuthu S, Asokan B, Chidambaram J, Zahir AA, Elango G, Chinnaperumal K (2010) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. doi:10.1007/s00436-010-2115-4

  • Wanner H, Zorn-Ahrens V (1972) Distribution of plumieride in Plumeria acutifolia and Plumeria bracteata. Berichte der Schweizerischen Botanischen Gesellschaft 81:27–39

    CAS  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides CTD/WHO PES/IC/96.1:69

  • WHO—World Health Organization 2009. Available from: http://www.who.int/mediacentre/factsheets/fs117/en/index.html

Download references

Acknowledgements

Authors are grateful to Dr. Murali Sastry and Dr. Sumant Phadtare, Tata Chemicals Ltd., Pune, India for their kind help in characterization of silver nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, C.D., Patil, S.V., Borase, H.P. et al. Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi . Parasitol Res 110, 1815–1822 (2012). https://doi.org/10.1007/s00436-011-2704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2704-x

Keywords

Navigation