Skip to main content

Advertisement

Log in

Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. Mosquito young instars are usually targeted with organophosphates, insect growth regulators and microbial control agents. Indoors residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have strong negative effects on human health and the environment. Newer and safer tools have been recently implemented to enhance control of mosquitoes. In this review, I focus on characterization, effectiveness, and non-target effects of mosquitocidal nanoparticles synthesized using botanical products (mosquitocidal nanoparticles, MNP). The majority of plant-fabricated MNP are silver ones. The synthesis of MNP is usually confirmed by UV-visualization spectroscopy, followed by scanning electron microscopy or transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. Interestingly, plant-synthesized metal nanoparticles have been reported as effective ovicides, larvicides, pupicides, adulticides, and oviposition deterrents against different mosquito species of medical and veterinary importance. Few parts per million of different MNP are highly toxic against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the filariasis mosquito Culex quiquefasciatus. However, despite the growing number of evidences about the effectiveness of MNP, moderate efforts have been carried out to shed light on their possible non-target effects against mosquito’s natural enemies and other aquatic organisms. In the final section, particular attention was dedicated to this issue. A number of hot areas that need further research and cooperation among parasitologists and entomologists are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x

    Google Scholar 

  • Angajala G, Ramya R, Subashini R (2014) In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop 135:19–26

    Article  CAS  PubMed  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis 12:262–268

    Article  PubMed  Google Scholar 

  • Arokiyaraj S, Dinesh Kumar V, Elakya V, Kamala T, Park SK, Ragam M, Saravanan M, Bououdina M, Arasu MV, Kovendan K, Vincent S (2015) Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.–potential for malaria vector control. Environ Sci Pollut Res Int 22:9759–9765

    Article  CAS  PubMed  Google Scholar 

  • Aurel Y, Jan G, Paul VL, Thijs W, Stephan WFM, Van H, Tom AM, Beumer TA, Robert R, Wijn RR, Rene G, Heideman RG, Vinod S, Johannes S, Kanger JS (2007) Fast ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7:394–397

    Article  CAS  Google Scholar 

  • Balakrishnan S, Srinivasan M, Mohanraj J (2015) Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J Parasit Dis. doi:10.1007/s12639-014-0621-5

    PubMed  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083

    Article  PubMed  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 2801-2805

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Article  PubMed  Google Scholar 

  • Benelli G (2015c) Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? Springer International Publishing Switzerland, H. Mehlhorn (ed.), Nanoparticles in the Fight Against Parasites - Parasitology Research Monographs Chapter 8, doi:10.1007/978-3-319-25292-6_8 (ISSN: 2192-3671)

  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236

    Article  PubMed  Google Scholar 

  • Benelli G, BediniS FG, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–1021

    Article  PubMed  Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  PubMed  Google Scholar 

  • Bouyer J, Lefrançois T (2014) Boosting the sterile insect technique to control mosquitoes. Trends Parasitol 30:271–273

    Article  PubMed  Google Scholar 

  • Bowatte G, Perera P, Senevirathne G, Meegaskumbura S, Meegaskumbura M (2013) Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol Control 67:469–474

    Article  Google Scholar 

  • Breman J (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64:1–11

    CAS  PubMed  Google Scholar 

  • Chadee DD, Williams SA, Ottesen EA (2002) Xenomonitoring of Culex quinquefasciatus mosquitoes as a guide for detecting the presence or absence of lymphatic filariasis: a preliminary protocol for mosquito sampling. Ann Trop Med Parasitol 96:47–53

    Article  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Chitra G, Balasubramani G, Ramkumar R, Sowmiya R, Perumal P (2015) Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1407–1415

    Article  PubMed  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–29

    Article  PubMed  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacif J Trop Med 4:799–803

    Article  CAS  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

    Book  Google Scholar 

  • Govindarajan M (2010) Larvicidal efficacy of Ficus benghalensis L plant leaf extracts against Culex quinquefasciatus Say Aedes aegypti L and Anopheles stephensi L (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14:107–111

    CAS  PubMed  Google Scholar 

  • Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Mehlhorn H, Barnard DR, Benelli G (2015) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res doi:10.1007/s00436-015-4794-3

  • Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol Res 112:1451–1459

    Article  PubMed  Google Scholar 

  • Heng MY, Tan SN, Yong JWH, Ong ES (2013) Emerging green technologies for the chemical standardization of botanicals and herbal preparations. Tr An Chem 50:1–10

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  • Karthikeyan J, Nila KM, Thooyavan G, Vimalkumar E (2014) Larvicidal and antibacterial efficacy of green synthesised silver nanoparticles using Melia dubia. Int J Pharm Pharmaceut Sci 6:395–399

    CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JS, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kumar KR, Nattuthurai N, Gopinath P, Mariappan T (2014) Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol Res 114:411–417

    Article  PubMed  Google Scholar 

  • Kumar S, Viney L, Deepti P (2015) Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine. doi:10.2217/NNM.15.112

    PubMed Central  Google Scholar 

  • Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Kumar NS (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res Int. doi:10.1007/s11356-015-5001-x

    PubMed  Google Scholar 

  • Liu H, Xu Q, Zhang L, Liu N (2005) Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J Med Entomol 42:815–820

    Article  CAS  PubMed  Google Scholar 

  • Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317

    Article  PubMed  Google Scholar 

  • Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2015) Biosynthesis, characterization and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res. doi:10.1007/s00436-015-4799-y

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224

    Google Scholar 

  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  • Murrell S, Wu SC, Butler M (2011) Review of dengue virus and the development of a vaccine. Biotechnol Adv 29:239–247

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 14:2243–2253

    Article  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114:3601–3610

    Article  PubMed  Google Scholar 

  • Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi:10.1007/s11356-015-4920-x

    Google Scholar 

  • Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Roni M, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Kumar S, Perumalsamy H, Ahn JY, Benelli G (2015e) Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses. Nat Prod Res. doi:10.1080/14786419.2015.1074230

    Google Scholar 

  • Murugan K, Aamina Labeeba M, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G (2015f) Aristolochia indica green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci 102:127–135

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Dinesh D, Paulpandi M, Dakhellah Meqbel Althbyani A, Subramaniam J, Madhiyazhagan P, Wang L, Suresh U, Mahesh Kumar P, Mohan J, Rajaganesh R, Wei H, Kalimuthu K, Parajulee MN, Mehlhorn H, Benelli G (2015g) Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-015-4676-8

    Google Scholar 

  • Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015h) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res. doi:10.1007/s00436-015-4710-x

    Google Scholar 

  • Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015i) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097

    Article  PubMed  Google Scholar 

  • Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, Wei H, Al Thabiani A, Saleh Alsalhi M, Devanesan S, Nicoletti M, Paramasivan R, Parajulee MN, Benelli G (2015j) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res doi:10.1007/s00436-015-4726-2

  • Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, Rajaganesh R, Wei H, Saleh Alsalhi M, Devanesan S, Nicoletti M, Syuhei B, Canale A, Benelli G (2015k) Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res doi:10.1007/s00436-015-4783-6

  • Muthukumaran U, Govindarajan M, Rajeswary M (2015a) Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 114:989–999

    Article  PubMed  Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015b) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res. doi:10.1007/s00436-015-4368-4

    Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M (2015c) Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control. Parasitol Res. doi:10.1007/s00436-015-4677-7

    Google Scholar 

  • Naresh Kumar A, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res 112:1053–1063

    Article  PubMed  Google Scholar 

  • Natarajan K, Selvaraj S, Murty VR (2010) Microbial production of silver nanoparticle. Digest J Nanomat Biostruct 5:135–140

    Google Scholar 

  • Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM (2006) The effect of gain and absorption on surface plasmon in metal nanoparticles. Appl Phys B 86:458–460

    Google Scholar 

  • Oberdorster E, Zhu S, Michelle Blickley T, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  • Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–S19

    Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  PubMed  Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562

    Article  PubMed  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187

    Article  CAS  Google Scholar 

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2015) Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res 22:2956–2963

    Article  CAS  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi A, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacif J Trop Biomed 2:574–580

    Article  CAS  Google Scholar 

  • Priyadarshini AK, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006

    Article  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM, Chung IM, Anbarasan K, Karthikeyan V (2015) Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol Res 114:571–581

    Article  PubMed  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Rajasekharreddy P, Rani PU (2015) Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng C 39:203–212

    Article  CAS  Google Scholar 

  • Raman N, Sudharsan S, Veerakumar V, Pravin N, Vithiy K (2012) Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 96:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88

    Article  CAS  PubMed  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and anti-microbial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622

    Article  CAS  PubMed  Google Scholar 

  • Robert LL, Olson JK (1989) Susceptibility of female Aedes albopictus from Texas to commonly used adulticides. J Am Mosq Control Assoc 5:251–253

    CAS  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

    Article  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38

    Article  CAS  PubMed  Google Scholar 

  • Roopan SM, Rohit MG, Rahuman A, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    Article  CAS  Google Scholar 

  • Santhosh SB, Yuvarajan R, Natarajan D (2015a) Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res 114:3087–3096

    Article  CAS  PubMed  Google Scholar 

  • Santhosh SB, Ragavendran C, Natarajan D (2015b) Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. J Photochem Photobiol B Photobiol 153:184–190

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  PubMed  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SA (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    Article  CAS  Google Scholar 

  • Shankar S, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Shawky AM, Abdulall AK, Rabeh MA, Abdellatif AO (2014) Enhanced biocidal activities of Citrullus colocynthis aqueous extracts by green nanotechnology. Int J Appl Res Nat Prod 7:1–10

    Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  PubMed  CAS  Google Scholar 

  • Song YJ, Jang HK, Kim SB (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2014) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 113:4015–4022

    Article  PubMed  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. doi:10.1007/s11356-015-5253-5

    Google Scholar 

  • Suganya A, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397

    Article  PubMed  Google Scholar 

  • Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113:1673–1679

    Article  PubMed  Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi:10.1007/s00436-015-4556-2

    Google Scholar 

  • Suman TY, Elumalai D, Kaleena PK, Rajasree SRR (2013) GC-MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crops Prod 47:239–245

    Article  CAS  Google Scholar 

  • Sundaravadivelan C, Nalini Padmanabhan M, Sivaprasath P, Kishmu L (2013) Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol Res 112:303–311

    Article  PubMed  Google Scholar 

  • Suresh G, Gunasekar PH, Kokil D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Vijaiyan Siva G (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A Mol Biomol Spectrosc 127:61–66

    Article  CAS  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:4073–4085

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2014a) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113:2363–2373

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Hoti SL (2014c) Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res 113:4567–4577

    Article  PubMed  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101

    Article  CAS  PubMed  Google Scholar 

  • Velu K, Elumalai D, Hemalatha P, Janaki A, Babu M, Hemavathi M, Kaleena PK (2015) Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-4919-3

    PubMed  Google Scholar 

  • Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta A Mol Biomol Spectrosc 25;137:886–891

  • Vimala RTV, Sathishkumar G, Sivaramakrishnan S (2015) Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect. Spectrochim Acta A Mol Biomol Spectrosc 135:110–115

    Article  CAS  PubMed  Google Scholar 

  • Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok Thailand. Commun Dis J 25:188–191

    Google Scholar 

  • WHO (2012) Handbook for integrated vector management. World Health Organization, Geneva

    Google Scholar 

  • WHO (2014a) Malaria. Fact sheet N°94. World Health Organization, Geneva

    Google Scholar 

  • WHO (2014b) Lymphatic filariasis. Fact sheet N°102. World Health Organization, Geneva

    Google Scholar 

  • WHO (2015) Dengue and severe dengue. Fact sheet N°117, Geneva, World Health Organization

Download references

Acknowledgments

I would like to thank H. Mehlhorn, M. Nicoletti, and K. Murugan for helpful discussions on the topic. I am grateful to Annalisa Lo Iacono for her kind assistance during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Disclosure

The author did not have potential conflict of interests relevant to the subject of this review. Giovanni Benelli is an Editorial Board Member of Parasitology Research. This does not alter the author’s adherence to all the Parasitology Research policies on sharing data and materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benelli, G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115, 23–34 (2016). https://doi.org/10.1007/s00436-015-4800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4800-9

Keywords

Navigation