Skip to main content
Log in

Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Highly stable nanoparticles of metallic silver with average dimension of 26.6 nm were synthesized by a simple, cost-effective, reproducible and previously unexploited biogenic source viz. dried green fruits of Drypetes roxburghii (Wall.) (common name putranjiva). The as-synthesized silver nanoparticles (Ag NP) were characterized by their characteristic surface plasmon resonance absorption spectra, X-ray diffraction analysis, energy dispersive X-ray analysis and selected area electron diffraction study. The morphology of the particles was determined by high-resolution transmission electron microscopy. Fourier transform infrared analysis focuses some light on the chemical framework that stabilizes the nanoparticles. The analyses of the phytochemicals present in the fruit extract of the plant were also performed following standard protocol. Mosquito larvicidal bioassay with the Ag NPs was carried out with two mosquitoes, namely Anopheles stephensi Liston and Culex quinquefasciatus Say. The results show impressive mortality rate even at too low concentration of nanoparticle. Toxicity test on non-target organism shows no harmful effect during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–266

    CAS  Google Scholar 

  • Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62:316–328. doi:10.1016/j.addr.2009.11.004

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28:313–318. doi:10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  • Asharani PV, Lian WY, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(255102):8

    Google Scholar 

  • Becheri A, Durr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679. doi:10.1007/s11051-007-9318-3

    Article  CAS  Google Scholar 

  • Bernhard L, Bernhard P, Agnusson P (2003) Management of patients with lymphoedema caused by filariasis in northeastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814. doi:10.1126/science.1075094

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Lee HH, Jin S, Chun S, Kim SH (2007) Characterization of the optical properties of silver nanoparticle films. Nanotechnology 18:075706. doi:10.1088/0957-4484/18/7/075706

    Article  PubMed  Google Scholar 

  • Chowdhury N, Laskar S, Chandra G (2008) Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complement Alter Med 8:62. doi:10.1186/1472-6882-8-62

    Article  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/cr030027b

    Article  PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, UK

    Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

    Article  PubMed  CAS  Google Scholar 

  • Haldar KM, Ghosh P, Chandra, G (2012) Evaluation of target specific larvicidal activity of the leaf extract of Typhonium trilobatum against Culex quinquefasciatus Say. Asian Pacific J of Trop Biomed 1:S199–S203

  • Harborne JB (1984) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall, London

    Book  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114

    Article  Google Scholar 

  • Hubenthal F (2011) Noble metal nanoparticles: synthesis and optical properties. Comprehen Nanosci Technol 1:375–435. doi:10.1016/B978-0-12-374396-1.00034-9

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA (2011) Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitol Res. doi:10.1007/s00436-011-2559-1

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194. doi:10.1007/s00436-010-2242-y

    Article  PubMed  Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New York, p 544

    Book  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153

    Article  CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem 106:7729–7744. doi:10.1021/jp0209289

    CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157. doi:10.1002/jctb.2023

    Article  CAS  Google Scholar 

  • Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444. doi:10.1016/j.jcis.2010.09.088

    Article  PubMed  CAS  Google Scholar 

  • Magudapatty P, Gangopadhyayrans P, Panigrahi B, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B 299:142–146

    Article  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517. doi:10.1007/s11051-007-9275-x

    Article  CAS  Google Scholar 

  • Murphy CJ (2008) Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J Mater Chem 18:2173–2176. doi:10.1039/b717456j

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci 156:1–13. doi:10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  • Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141. doi:10.1126/science.294.5540.137

    Article  PubMed  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27:264–271. doi:10.1021/la103190n

    Article  PubMed  CAS  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letts 209:171–176

    Article  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi:10.1002/anie.200603148

    Article  CAS  Google Scholar 

  • Prathna TC, Chandrasekarana N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloid Surf B: Biointerfaces 82:152–159. doi:10.1016/j.colsurfb.2010.08.036

    Article  CAS  Google Scholar 

  • Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem: A Euro J 8:28–35. doi:10.1002/1521-3765(20020104

    Article  CAS  Google Scholar 

  • Rawani A, Haldar KM, Ghosh A, Chandra G (2009) Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 105:1411–1417. doi:10.1007/s00436-009-1573-z

    Article  PubMed  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2010) Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res 107:1235–1240. doi:10.1007/s00436-010-1993-9

    Article  PubMed  Google Scholar 

  • Ren X, Meng X, Chen D, Tang F, Jiao J (2005) Using silver nanoparticle to enhance current response of biosensor. Biosensor Bioelectro 21:433–437

    Article  CAS  Google Scholar 

  • Rizk A-FM (1987) The chemical constituents and economic plants of the Euphorbiaceae. Bot J Linn Soc 94:293–326. doi:10.1111/j.1095-8339.1987.tb01052.x

    Article  Google Scholar 

  • Rosei F (2004) Nanostructured surfaces: challenges and frontiers in nanotechnology. J Phys: Condensed Matter 16:S1373–S1436. doi:10.1088/0953-8984/16/17/001

    Article  CAS  Google Scholar 

  • Roy N, Mondal S, Laskar RA, Basu S, Mandal D, Begum NA (2010) Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids Surf B: Biointerfaces 76:317–325. doi:10.1016/j.colsurfb.2009.11.011

    Article  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831. doi:10.1007/s00436-011-2328-1

    Article  PubMed  Google Scholar 

  • Sengupta P, Chakraborty AK, Duffield AM, Durham LJ, Djerassi C (1968) Chemical investigations on putranjiva roxburghii: the structure of a new triterpene, putranjivadione. Tetrahedron 24:1205–1213. doi:10.1016/0040-4020(68)88069-X

    Article  CAS  Google Scholar 

  • Shaalan EAS, Canyonb D, Younesc MWF, Abdel-Wahaba H, Mansoura AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    Article  PubMed  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Parischa R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826. doi:10.1039/B303808B

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003b) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Coll Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002

    Article  CAS  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84. doi:10.1007/s00449-008-0224-6

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184. doi:10.1007/s00436-011-2467-4

    Article  PubMed  Google Scholar 

  • Stahl E (1989) Thin layer chromatography—a laboratory handbook, 2nd edn. Springer, Berlin

    Google Scholar 

  • Varshney AK, Aquil M, Rahman W, Okigawa M, Kawano N (1973) Biflavones from Putranjiva roxburghii. Phytochemistry 12:1501. doi:10.1016/0031-9422(73)80599-0

    Article  CAS  Google Scholar 

  • Vineetha A, Murugan K (2009) Larvicidal and smoke repellency effect of Toddalia asiatica and Aegle marmelos against the dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Entomol Res 39:61–65

    Article  Google Scholar 

  • Vinod VTP, Saravanan P, Sreedhar B, Keerthi Devi D, Sashidhar RB (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B: Biointerfaces 83:291–298. doi:10.1016/j.colsurfb.2010.11.035

    Article  CAS  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13

Download references

Acknowledgments

Financial support from University Grants commission (UGC) is gratefully acknowledged. KMH thanks UGC for providing her research fellowship (no. F.17-8/08 (SA-I)). The authors are indebted to Dr. Anupam Ghosh of Bankura Christian College, Bankura, W.B. and Mr. Subhasish Roy of Indian Association for Cultivation of Science for their invaluable cooperation in the FTIR and XRD measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldar, K.M., Haldar, B. & Chandra, G. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol Res 112, 1451–1459 (2013). https://doi.org/10.1007/s00436-013-3288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3288-4

Keywords

Navigation