Skip to main content
Log in

Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The efficacy of silver synthesized biolarvicide with the help of entomopathogenic fungus, Beauveria bassiana, was assessed against the different larval instars of dengue vector, Aedes aegypti. The silver nanoparticles were observed and characterized by a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). A surface plasmon resonance band was observed at 420 nm in UV-vis spectrophotometer. The characterization was confirmed by shape (spherical), size 36.88–60.93 nm, and EDX spectral peak at 3 keV of silver nanoparticles. The synthesized silver nanoparticles have been tested against the different larval instars of Ae. aegypti at different concentrations for a period of 24 h. Ae. aegypti larvae were found more susceptible to the synthesized silver nanoparticles. The LC50 and LC90 values are 0.79 and 1.09 ppm with respect to the Ae. aegypti treated with B. bassiana (Bb) silver nanoparticles (AgNPs). First and second instar larvae of Ae. aegypti have shown cent percent mortality while third and fourth instars found 50.0, 56.6, 70.0, 80.0, and 86.6 and 52.4, 60.0, 68.5, 76.0, and 83.3 % mortality at 24 h of exposure in 0.06 and 1.00 ppm, respectively. It is suggested that the entomopathogenic fungus synthesized silver nanoparticles would be appropriate for environmentally safer and greener approach for new leeway in vector control strategy through a biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad RS, Sara M, Himid RS, Hossein J, Ashraf-Asadat N (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  Google Scholar 

  • Bhainsa CK, D’Souza FS (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha RP, Mandal S, Epidi TT (2010) Nano- particles a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493

    CAS  Google Scholar 

  • Borase HP, Patil CD, Salunkh RB, Narkhede CP, Salunke BK (2013) Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal agent. J Nanomedine Biotherapeutic Discov 3(1):1–7

    Article  Google Scholar 

  • Cadavid-Restrepo G, Sahaza J, Orduz S (2012) Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance. Mem Inst Oswaldo Cruz 107:74–79

    Article  CAS  PubMed  Google Scholar 

  • Chenniappan K, Ayyadurai N (2012) Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:381–388

    Article  PubMed  Google Scholar 

  • Cullity BD (1978) Elements of X-ray Diffraction, 2nd edition, Addison-Wesley, Reading, MA 102

    Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis 3(3):174–179

    Article  CAS  PubMed Central  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W (2007) Preparation and antibacterial activity of Fe3O4 Ag nanoparticles. Nanotechnology 18:285604

    Article  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009a) Biosynthesis, purification characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74:328–335

    Article  CAS  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009b) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  CAS  PubMed  Google Scholar 

  • Haraprasad N, Niranjans SR, Prakash HS, Shetty HS, Seema W (2001) Beauveria bassiana—a potential mycopesticide for the efficient control of coffee Berry Borer, Hypothenemus hampei (Ferrari). India Biocontrol Sci Tech 11:251–260

    Article  Google Scholar 

  • Ingle AP, Gade AK, Pierrat S, Sconnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jeevan P, Ramya K, Rena EA (2012) Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. IJBT 11(1):72–76

    CAS  Google Scholar 

  • Kalimuthu K, Babu SR, Venkataraman DM, Bilal Gurunathan S (2008) Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Karthikeyan S, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles Brevibacterium casei. Colloids Surf B 77:257–262

    Article  CAS  Google Scholar 

  • Lengke FM, Fleet EM, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous Cyanobacteria a from a silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  PubMed  Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. doi:10.1155/2011/546074

    PubMed Central  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nano- particles formed. Angew Chem Int Ed Engl 40(19):3585–3588

    Article  CAS  PubMed  Google Scholar 

  • Najitha Banu A, Balasubramanian C, Vinayaga Moorthi P (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:311–316

    Article  PubMed  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456

    Article  CAS  PubMed  Google Scholar 

  • National Vector Borne Disease Control Programme (NVBDCP) (2011) Dengue cases and deaths in the country since 2007

  • Salunkhe RB, Patil SV, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus, Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajkumar G, Marimuthu S, Bagavan A, Jayaseelan C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filarisasis vector. Parasitol Res 108:693–702

    Article  PubMed  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    Article  CAS  Google Scholar 

  • Singh K, Shekhawat PS, Singh AR (2013) Behavioral toxicity of biosynthesized silver nanoparticles on Culex mosquito larvae. Int J Pharm Sci Rev Res 21(2):113–119

    CAS  Google Scholar 

  • Sonal BS, Swapnil C, Gaikwad K, Gade AK, Mahendra R (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 1–12

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticles 2:125–132

    Article  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and Filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera:Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Tanja K, Ralph J, Eva O, Claes-Goran G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13614

    Article  Google Scholar 

  • Tetreau G, Alessi M, Veyrenc S, Périgon S, David JP, Reynaud S, Després L (2012) Fate of Bacillus thuringiensis subsp. israelensis in the Field:Evidence for Spore Recycling and Differential Persistence of Toxins in Leaf Litter Appl Environ Microbiol 78(23):8362–8367

    CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputrea NM, Varadarajana PV, Nachanea RP, Paralikaraand KM, Balasubramanyaa RH, Paralikaraand KM (2007) Balasubramanyaa RH (2007) biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides WHO/CDS/WHOPES/GCDPP/13

  • World Health Organization (2012) Dengue and severe dengue. http://www.who.int/mediacemtre/factsheets/fs117/en/

  • Yang T, Lu L, Fu G, Zhong S, Ding G (2009) Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang Province, China. J Vector Ecol 34:148–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Management, Thiagarajar College (Autonomous), Madurai, for providing the facilities to perform the research works in the PG and Research Department of Zoology and Microbiology. The author (ANB) thank UGC-MANF, India, for the financial support and CRME (ICMR), Madurai, kindly supplied eggs and larvae required during our work. We thank the Department of Chemistry, Madras University and Karunya University, Coimbatore, for the instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Najitha Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, A.N., Balasubramanian, C. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113, 2869–2877 (2014). https://doi.org/10.1007/s00436-014-3948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3948-z

Keywords

Navigation