Skip to main content

Phytosynthesized Metal Nanomaterials as an Effective Mosquitocidal Agent

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Mosquitoes are notable vectors of various diseases, including dengue, malaria, filariasis and yellow fever. Conventional mosquito repellents or mosquitocidal agents are synthesized via chemicals that have exhibited adverse toxicity towards humans and the environment with several limitations. In recent times, nanomaterials are introduced as a potential alternative to conventional mosquitocidal chemicals due to their high surface-to-volume ratio and ability to inhibit their growth at the cellular level. However, nanomaterials prepared via physical and chemical approaches are either costly or toxic to plants, animals, humans and the environment. Thus, nanomaterials fabricated using plant extracts are widely used recently as an effective mosquitocidal agent. The synergistic mosquitocidal property of the phytochemicals from plants and the nanomaterials is beneficial in inhibiting the population of mosquitoes by targeting their egg, pupa, larva and adult. Moreover, the phytochemicals as surface functional groups in these nanomaterials are beneficial in reducing their adverse toxic effects. Hence, this chapter is an overview of the various synthesis approaches to fabricate metal nanoparticles and the significance of phytosynthesis approach. In addition, the mosquitocidal property of the metal nanoparticles and their mechanism of action are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El Hafiz Hassanain N, Zeinhom Shehata A, Mohamed Mokhtar M, Mohamed Shaapan R, Abd El Hafiz Hassanain M, Zaky S (2019) Comparison between insecticidal activity of Lantana camara extract and its synthesized nanoparticles against Anopheline mosquitoes. Pak J Biol Sci 22(7):327–334. https://doi.org/10.3923/pjbs.2019.327.334

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87

    Google Scholar 

  • Abkenar AK, Naderi M (2016) Chemical synthesis of gold nanoparticles with different morphology from a secondary source. J Iran Chem Soc 13(12):2173–2184

    CAS  Google Scholar 

  • AlQahtani FS, AlShebly MM, Govindarajan M, Senthilmurugan S, Vijayan P, Benelli G (2017) Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors. J Asia Pac Entomol 20(1):157–164

    Google Scholar 

  • Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, San Chan Y, Danquah MK (2019) Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedeberg's Arch Pharmacol 392(7):755–771

    CAS  Google Scholar 

  • Angajala G, Pavan P, Subashini R (2014) One-step biofabrication of copper nanoparticles from Aegle marmelos correa aqueous leaf extract and evaluation of its anti-inflammatory and mosquito larvicidal efficacy. RSC Adv 4(93):51459–51470. https://doi.org/10.1039/C4RA10003D

    Article  CAS  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis 12(3):262–268

    PubMed  Google Scholar 

  • Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018:1

    Google Scholar 

  • Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012:2

    Google Scholar 

  • Aygun A, Gülbagca F, Ozer LY, Ustaoglu B, Altunoglu YC, Baloglu MC, Atalar MN, Alma MH, Sen F (2020) Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J Pharm Biomed Anal 179:112961

    CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419. http://dx.doi.org/10.1155/2014/689419

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Balamurugan M, Kaushik S, Saravanan S (2016) Green synthesis of gold nanoparticles by using Peltophorum pterocarpum flower extracts. Nano Biomed Eng 8(4):213–218

    CAS  Google Scholar 

  • Bamoharram FF, Ahmadpour A, Heravi MM, Ayati A, Rashidi H, Tanhaei B (2012) Recent advances in application of polyoxometalates for the synthesis of nanoparticles. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 42(2):209–230

    CAS  Google Scholar 

  • Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E (2019) Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomed Nanotechnol Biol Med 18:221–233

    CAS  Google Scholar 

  • Bayazit MK, Yue J, Cao E, Gavriilidis A, Tang J (2016) Controllable synthesis of gold nanoparticles in aqueous solution by microwave assisted flow chemistry. ACS Sustain Chem Eng 4(12):6435–6442

    CAS  Google Scholar 

  • Begletsova NN, Shinkarenko OA, Selifonova EI, Tsvetkova OY, Zakharevich A, Chernova RK, Kletsov AA, Glukhovskoy EG (2017) Synthesis of copper nanoparticles stabilized with cetylpyridinium chloride micelles. Adv Mater Let 8(4):404–409

    CAS  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25(13):12329–12341

    CAS  Google Scholar 

  • Benelli G, Jeffries CL, Walker T (2016) Biological control of mosquito vectors: past, present, and future. Insects 7(4):52

    PubMed Central  Google Scholar 

  • Borgheti-Cardoso LN, San Anselmo M, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, Fernàndez-Busquets X, Sierra T (2020) Promising nanomaterials in the fight against malaria. J Mater Chem B 8(41):9428–9448

    Google Scholar 

  • Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protect Res 57(2):194–200. https://doi.org/10.1515/jppr-2017-0026

  • Camas M, Celik F, Sazak Camas A, Ozalp HB (2019) Biosynthesis of gold nanoparticles using marine bacteria and Box–Behnken design optimization. Part Sci Technol 37(1):31–38

    CAS  Google Scholar 

  • Castro L, Blázquez ML, González F, Muñoz JÁ, Ballester A (2015) Biosynthesis of silver and platinum nanoparticles using orange peel extract: characterisation and applications. IET Nanobiotechnol 9(5):252–258

    PubMed  Google Scholar 

  • Cheng Y, Wang F, Fang C, Su J, Yang L (2016) Preparation and characterization of size and morphology controllable silver nanoparticles by citrate and tannic acid combined reduction at a low temperature. J Alloys Compd 658:684–688

    CAS  Google Scholar 

  • Cui Y, Lai X, Liu K, Liang B, Ma G, Wang L (2020) Ginkgo Biloba leaf polysaccharide stabilized palladium nanoparticles with enhanced peroxidase-like property for the colorimetric detection of glucose. RSC Adv 10(12):7012–7018

    CAS  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18

    Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Mahesh Kumar P, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529. https://doi.org/10.1007/s00436-015-4336-z

    Article  PubMed  Google Scholar 

  • Dong J, Carpinone PL, Pyrgiotakis G, Demokritou P, Moudgil BM (2020) Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Particle J 37:224–232

    CAS  Google Scholar 

  • Dwivedy AK, Singh VK, Kumar M, Upadhyay N, Das S, Chaudhari AK, Dubey NK. Bioprospection of traditionally used medicinal plants: an overview

    Google Scholar 

  • Edison TNJI, Atchudan R, Kamal C, Lee YR (2016) Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess Biosyst Eng 39(9):1401–1408

    CAS  PubMed  Google Scholar 

  • Elemike EE, Onwudiwe DC, Ekennia AC, Sonde CU, Ehiri RC (2017) Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito Larvicidal activities. Molecules 22(5). https://doi.org/10.3390/molecules22050674

  • Foko LPK, Meva FEA, Moukoko CEE, Ntoumba AA, Njila MIN, Kedi PBE, Ayong L, Lehman LG (2019) A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: overview, challenges and future perspectives. Malar J 18(1):337

    Google Scholar 

  • Gandhi AD, Murugan K, Umamahesh K, Babujanarthanam R, Kavitha P, Selvi A (2019) Lichen Parmelia sulcata mediated synthesis of gold nanoparticles: an eco-friendly tool against Anopheles stephensi and Aedes aegypti. Environ Sci Pollut Res 26(23):23886–23898

    CAS  Google Scholar 

  • González-Ballesteros N, Prado-López S, Rodríguez-González J, Lastra M, Rodríguez-Argüelles M (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B Biointerfaces 153:190–198

    PubMed  Google Scholar 

  • Granata G, Yamaoka T, Pagnanelli F, Fuwa A (2016) Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability. J Nanopart Res 18(5):133

    Google Scholar 

  • Gudikandula K, Charya Maringanti S (2016) Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci 11(9):714–721

    CAS  Google Scholar 

  • Gudikandula K, Vadapally P, Charya MS (2017) Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. Open Nano 2:64–78

    Google Scholar 

  • Gupta P (2020) Development of mosquitocidal herbal nanoemulsions for controlling the dengue vector Aedes aegypti

    Google Scholar 

  • Gupta K, Chundawat TS (2019) Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater Res Exp 6(10):1050d1056

    Google Scholar 

  • Gupta A, Pandey S, Variya B, Shah S, Yadav JS (2019) Green synthesis of gold nanoparticles using different leaf extracts of Ocimum gratissimum Linn for anti-tubercular activity. Curr Nanomed (Formerly: Recent Patents on Nanomedicine) 9(2):146–157

    CAS  Google Scholar 

  • Gurusamy V, Krishnamoorthy R, Gopal B, Veeraravagan V (2017) Systematic investigation on hydrazine hydrate assisted reduction of silver nanoparticles and its antibacterial properties. Inorgan Nano-Metal Chem 47(5):761–767

    CAS  Google Scholar 

  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces 95:284–288

    CAS  PubMed  Google Scholar 

  • Huang Y-JS, Higgs S, Vanlandingham DL (2017) Biological control strategies for mosquito vectors of arboviruses. Insects 8(1):21

    CAS  PubMed Central  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):229

    PubMed  PubMed Central  Google Scholar 

  • Inwati GK, Rao Y, Singh M (2016) In situ free radical growth mechanism of platinum nanoparticles by microwave irradiation and electrocatalytic properties. Nanoscale Res Lett 11(1):1–8

    CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Akita I, Sumi T, Matsubara M, Yonezawa T (2016) Thiolate–protected gold nanoparticles via physical approach: unusual structural and photophysical characteristics. Sci Rep 6:29928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jameel MS, Aziz AA, Dheyab MA (2020) Comparative analysis of platinum nanoparticles synthesized using sonochemical-assisted and conventional green methods. Nano-Struct Nano-Objects 23:100484

    CAS  Google Scholar 

  • Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174

    CAS  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. Chem Bio Eng Rev 3(2):55–67

    Google Scholar 

  • Jeevanandam J, Pal K, Danquah MK (2018) Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 157:38–47

    PubMed  Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2019) Effect of pH variations on morphological transformation of biosynthesized MgO nanoparticles. Part Sci Technol 38(5):573–586

    Google Scholar 

  • Jeevanandam J, Sundaramurthy A, Sharma V, Murugan C, Pal K, Kodous MHA, Danquah MK (2020) Sustainability of one-dimensional nanostructures: fabrication and industrial applications. In: Sustainable nanoscale engineering. Elsevier, pp 83–113

    Google Scholar 

  • Jeyaraj M, Gurunathan S, Qasim M, Kang M-H, Kim J-H (2019) A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nano 9(12):1719

    CAS  Google Scholar 

  • Kaur P (2018) Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review. Biotechnol Res Innov 2(1):63–73

    Google Scholar 

  • Khader SZA, Syed Zameer Ahmed S, Sathyan J, Mahboob MR, Venkatesh P, Ramesh K (2018) A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles. Egypt J Basic Appl Sci 5(1):54–62. https://doi.org/10.1016/j.ejbas.2018.01.002

    Article  Google Scholar 

  • Khan A, Rashid A, Younas R, Chong R (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 6(1):21–26

    CAS  Google Scholar 

  • Khater HF, Selim AM, Abouelella GA, Abouelella NA, Murugan K, Vaz NP, Govindarajan M (2019) Commercial mosquito repellents and their safety concerns. In: Malaria. IntechOpen

    Google Scholar 

  • Kovendan K, Chandramohan B, Dinesh D, Abirami D, Vijayan P, Govindarajan M, Vincent S, Benelli G (2016) Green-synthesized silver nanoparticles using Psychotria nilgiriensis: toxicity against the dengue vector Aedes aegypti (Diptera: Culicidae) and impact on the predatory efficiency of the non-target organism Poecilia sphenops (Cyprinodontiformes: Poeciliidae). J Asia Pac Entomol 19(4):1001–1007

    Google Scholar 

  • Kumar N, Biswas K, Gupta RK (2016) Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Adv 6(112):111380–111388

    CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24(4):473–484

    PubMed  Google Scholar 

  • Kuppusamy P, Ilavenil S, Srigopalram S, Maniam GP, Yusoff MM, Govindan N, Choi KC (2017) Treating of palm oil mill effluent using Commelina nudiflora mediated copper nanoparticles as a novel bio-control agent. J Clean Prod 141:1023–1029

    CAS  Google Scholar 

  • Lalitha K, Kalaimurgan D, Nithya K, Venkatesan S, Shivakumar MS (2020) Antibacterial, antifungal and Mosquitocidal efficacy of copper nanoparticles synthesized from Entomopathogenic nematode: insect–host relationship of bacteria in secondary metabolites of Morganella morganii sp.(PMA1). Arab J Sci Eng 45:4489

    CAS  Google Scholar 

  • LewisOscar F, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C (2016) Algal nanoparticles: synthesis and biotechnological potentials. Algae–Organisms Imminent Biotechnol 7:157–182

    Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011(8):1–16

    Google Scholar 

  • Lourthuraj AA, Selvam MM, Hussain MS, Abdel-Warith A-WA, Younis EMI, Al-Asgah NA (2020) Dye degradation, antimicrobial and larvicidal activity of silver nanoparticles biosynthesized from Cleistanthus collinus. Saudi J Biol Sci 27(7):1753–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maroufpour N, Mousavi M, Abbasi M, Ghorbanpour M (2020) Biogenic nanoparticles as novel sustainable approach for plant protection. In: Biogenic nano-particles and their use in agro-ecosystems. Springer, pp 161–172

    Google Scholar 

  • Mendivil Palma MI, Krishnan B, Rodriguez GAC, Das Roy TK, Avellaneda DA, Shaji S (2016) Synthesis and properties of platinum nanoparticles by pulsed laser ablation in liquid. J Nanomater 2016:1

    Google Scholar 

  • Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Kónya Z, Tóth-Szeles E, Szűcs R (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8(1):1–12

    Google Scholar 

  • Mondal NK, Hajra A (2016) Synthesis of copper nanoparticles (CuNPs) from petal extracts of marigold (Tagetes sp.) and sunflower (Helianthus sp.) and their effective use as a control tool against mosquito vectors. J Mosquito Res 6(19):1–9

    Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang J-S, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    CAS  PubMed  Google Scholar 

  • Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang J-S, Wang L, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016) Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 23(16):16671–16685. https://doi.org/10.1007/s11356-016-6832-9

    Article  CAS  Google Scholar 

  • Nagao H, Ichiji M, Hirasawa I (2017) Synthesis of platinum nanoparticles by reductive crystallization using polyethyleneimine. Chem Eng Technol 40(7):1242–1246

    CAS  Google Scholar 

  • Naharuddin NZA, Sadrolhosseini AR, Bakar MHA, Tamchek N, Mahdi MA (2020) Laser ablation synthesis of gold nanoparticles in tetrahydrofuran. Opt Mater Exp 10(2):323–331

    CAS  Google Scholar 

  • Nancy P, James J, Valluvadasan S, Kumar RA, Kalarikkal N (2018) Laser–plasma driven green synthesis of size controlled silver nanoparticles in ambient liquid. Nano-Struct Nano-Objects 16:337–346

    CAS  Google Scholar 

  • Nikam A, Prasad B, Kulkarni A (2018) Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20(35):5091–5107

    CAS  Google Scholar 

  • Pan Z, Lin Y, Sarkar B, Owens G, Chen Z (2020) Green synthesis of iron nanoparticles using red peanut skin extract: synthesis mechanism, characterization and effect of conditions on chromium removal. J Colloid Interface Sci 558:106–114

    PubMed  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):1

    Google Scholar 

  • Parthiban E, Manivannan N, Ramanibai R, Mathivanan N (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:e00297

    Google Scholar 

  • Parveen K, Banse V, Ledwani L (2016a) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Publishing LLC, p 020048

    Google Scholar 

  • Parveen K, Banse V, Ledwani L (2016b) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Publishing LLC, p 020048

    Google Scholar 

  • Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25

    CAS  Google Scholar 

  • Patil MP, Ngabire D, Thi HHP, Kim M-D, Kim G-D (2017) Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Clust Sci 28(1):119–132

    CAS  Google Scholar 

  • Pilaquinga F, Morejón B, Ganchala D, Morey J, Piña N, Debut A, Neira M (2019) Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLoS One 14(10):e0224109. https://doi.org/10.1371/journal.pone.0224109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, http://dx.doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R (2019a) Plant Nanobionics: Advances in the Understanding of Nanomaterials Research and Applications. Springer International Publishing (ISBN 978-3-030-12495-3) https://www.springer.com/gp/book/9783030124953

  • Prasad R (2019b) Plant Nanobionics: Approaches in Nanoparticles Biosynthesis and Toxicity. Springer International Publishing (ISBN 978-3-030-16379-2) https://www.springer.com/gp/book/9783030163785

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Kumar V, Kumar M, Wang S (2018a) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656

  • Prasad R, Jha A and Prasad K (2018b) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Quazi HA (2020) Commercializing nanotechnology: a roadmap to taking Nanoproducts from laboratory to market. CRC Press

    Google Scholar 

  • Rafique M, Rafique MS, Kalsoom U, Afzal A, Butt SH, Usman A (2019) Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Opt Quant Electron 51(6):179

    Google Scholar 

  • Rai M, Maliszewska I, Ingle A, Gupta I, Yadav A (2015) Diversity of microbes in synthesis of metal nanoparticles: progress and limitations. In: Bio-nanoparticles: biosynthesis and sustainable biotechnological implications, pp 1–30

    Google Scholar 

  • Rajesh KM, Ajitha B, Reddy YAK, Suneetha Y, Reddy PS (2018) Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: physical, optical and antimicrobial properties. Optik 154:593–600

    CAS  Google Scholar 

  • Rajkumar R, Shivakumar MS, Senthil Nathan S, Selvam K (2019) Preparation and characterization of Chitosan nanocomposites material using silver nanoparticle synthesized Carmona retusa (Vahl) Masam leaf extract for antioxidant, anti-cancerous and insecticidal application. J Clust Sci 30(4):1145–1155. https://doi.org/10.1007/s10876-019-01578-9

    Article  CAS  Google Scholar 

  • Rak MJ, Friščić T, Moores A (2016) One-step, solvent-free mechanosynthesis of silver nanoparticle-infused lignin composites for use as highly active multidrug resistant antibacterial filters. RSC Adv 6(63):58365–58370

    CAS  Google Scholar 

  • Ramanathan AA, Aqra MW (2019) An overview of the green road to the synthesis of nanoparticles. J Mater Sci Res Rev 2(3):1–11

    Google Scholar 

  • Ramesh S, Vetrivel S, Suresh P, Kaviarasan V (2020) Characterization techniques for nano particles: A practical top down approach to synthesize copper nano particles from copper chips and determination of its effect on planes. Mater Today Proc 33:2626

    CAS  Google Scholar 

  • Rana A, Yadav K, Jagadevan S (2020) A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J Clean Prod 272:122880

    Google Scholar 

  • Rheder DT, Guilger M, Bilesky-José N, Germano-Costa T, Pasquoto-Stigliani T, Gallep TBB, Grillo R, dos Santos CC, Fraceto LF, Lima R (2018) Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci Rep 8(1):1–11

    CAS  Google Scholar 

  • Sadrolhosseini AR, Mahdi MA, Alizadeh F, Rashid SA (2019a) Laser ablation technique for synthesis of metal nanoparticle in liquid. IntechOpen

    Google Scholar 

  • Sadrolhosseini AR, Habibiasr M, Shafie S, Solaimani H, Lim HN (2019b) Optical and thermal properties of laser-ablated platinum nanoparticles graphene oxide composite. Int J Mol Sci 20(24):6153

    CAS  PubMed Central  Google Scholar 

  • Sadrolhosseini AR, Rashid SA, Shafie S, Soleimani H (2019c) Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite. Appl Phys A 125(2):82

    Google Scholar 

  • Şahin Ün Ş, Ünlü A, Ün İ, Ok S (2020) Green synthesis, characterization and catalytic activity evaluation of palladium nanoparticles facilitated by Punica granatum peel extract. Inorganic Nano-Metal Chem:1–9. https://doi.org/10.1080/24701556.2020.1832118

  • Saglam N, Korkusuz, F, Prasad R (2021) Nanotechnology Applications in Health and Environmental Sciences. Springer International Publishing (ISBN: 978-3-030-64410-9) https://www.springer.com/gp/book/9783030644093

  • Saranya S, Selvi A, Babujanarthanam R, Rajasekar A, Madhavan J (2020) Insecticidal activity of nanoparticles and mechanism of action. In: Model organisms to study biological activities and toxicity of nanoparticles. Springer, pp 243–266

    Google Scholar 

  • Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40

    Google Scholar 

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased Nanotechnology for Green Applications. Springer International Publishing (ISBN 978-3-030-61985-5) https://www.springer.com/gp/book/9783030619848

  • Seetharaman PK, Chandrasekaran R, Gnanasekar S, Chandrakasan G, Gupta M, Manikandan DB, Sivaperumal S (2018) Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatal Agric Biotechnol 16:22–30

    Google Scholar 

  • Sehgal N, Soni K, Gupta N, Kanchan K (2018) Microorganism assisted synthesis of gold nanoparticles: a review. Asian J Biomed Pharm Sci 8(64):22–29

    CAS  Google Scholar 

  • Senthil-Nathan S (2019) A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative Larvicidal agents against mosquitoes. Front Physiol 10:1591

    PubMed  Google Scholar 

  • Shah KW, Zheng L (2019) Microwave-assisted synthesis of hexagonal gold nanoparticles reduced by Organosilane (3-Mercaptopropyl) trimethoxysilane. Materials 12(10):1680

    CAS  PubMed Central  Google Scholar 

  • Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, Pugazhendhi A (2019) Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Curr Pharm Des 25(24):2650–2660

    CAS  PubMed  Google Scholar 

  • Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arab J Chem 12(8):3576–3600

    CAS  Google Scholar 

  • Sharma A, Tripathi P, Kumar S (2020) One-pot synthesis of silver nanocomposites from Achyranthes aspera: an eco-friendly larvicide against Aedes aegypti L. Asian Pac J Trop Biomed 10(2):54–64. https://doi.org/10.4103/2221-1691.275420

    Article  CAS  Google Scholar 

  • Sharon EA, Velayutham K, Ramanibai R (2018) Biosynthesis of copper nanoparticles using Artocarpus heterophyllus against dengue vector Aedes aegypti. Int J Life Sci Scienti Res eISSN 2455(1716):1716

    Google Scholar 

  • Shehu Z, Danbature WL, Magaji B, Adam MM, Bunu MA, Mai AJ, Mela Y (2020) Green synthesis and nanotoxicity assay of copper-cobalt bimetallic nanoparticles as a novel nanolarvicide for mosquito larvae management. Int J Biotechnol 9(2):99–104

    Google Scholar 

  • Shelar A, Sangshetti J, Chakraborti S, Singh AV, Patil R, Gosavi S (2019) Helminthicidal and Larvicidal potentials of biogenic silver nanoparticles synthesized from medicinal plant Momordica charantia. Med Chem 15(7):781–789. https://doi.org/10.2174/1573406415666190430142637

    Article  CAS  PubMed  Google Scholar 

  • Shkryl YN, Veremeichik GN, Kamenev DG, Gorpenchenko TY, Yugay YA, Mashtalyar DV, Nepomnyaschiy AV, Avramenko TV, Karabtsov AA, Ivanov VV (2018) Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. Artif Cells Nanomed Biotechnol 46(8):1646–1658

    CAS  PubMed  Google Scholar 

  • Shu M, He F, Li Z, Zhu X, Ma Y, Zhou Z, Yang Z, Gao F, Zeng M (2020) Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res Lett 15(1):14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016a) Microbial synthesis of flower-shaped gold nanoparticles. Artificial Cells Nanomed Biotechnol 44(6):1469–1474

    CAS  Google Scholar 

  • Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC (2016b) Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol 86:75–83

    CAS  Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184

    PubMed  Google Scholar 

  • Soshnikova V, Kim YJ, Singh P, Huo Y, Markus J, Ahn S, Castro-Aceituno V, Kang J, Chokkalingam M, Mathiyalagan R (2018a) Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells Nanomed Biotechnol 46(1):108–117

    CAS  Google Scholar 

  • Soshnikova V, Kim YJ, Singh P, Huo Y, Markus J, Ahn S, Castro-Aceituno V, Kang J, Chokkalingam M, Mathiyalagan R, Yang DC (2018b) Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells Nanomed Biotechnol 46(1):108–117. https://doi.org/10.1080/21691401.2017.1296849

    Article  CAS  Google Scholar 

  • Sowndarya P, Ramkumar G, Shivakumar MS (2017) Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells Nanomed Biotech 45(8):1490–1495. https://doi.org/10.1080/21691401.2016.1252383

    Article  CAS  Google Scholar 

  • Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN (2016) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 6(1):34–56

    CAS  Google Scholar 

  • Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomed Nanotechnol Biol Med 6(5):634–641

    CAS  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23(8):7543–7558

    CAS  Google Scholar 

  • Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV (2020) Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. Bio Nano Sci 10(1):292–310. https://doi.org/10.1007/s12668-019-00703-2

    Article  Google Scholar 

  • Sutthanont N, Attrapadung S, Nuchprayoon S (2019) Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 10(1). https://doi.org/10.3390/insects10010027

  • Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 97:27–31

    CAS  PubMed  Google Scholar 

  • Tahvilian R, Zangeneh MM, Falahi H, Sadrjavadi K, Jalalvand AR, Zangeneh A (2019) Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties. Appl Organomet Chem 33(12):e5234. https://doi.org/10.1002/aoc.5234

    Article  CAS  Google Scholar 

  • Tyagi H, Kushwaha A, Kumar A, Aslam M (2016) A facile pH controlled citrate-based reduction method for gold nanoparticle synthesis at room temperature. Nanoscale Res Lett 11(1):362

    PubMed  PubMed Central  Google Scholar 

  • Usman AI, Aziz AA, Noqta OA (2019) Green sonochemical synthesis of gold nanoparticles using palm oil leaves extracts. Mater Today Proc 7:803–807

    CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J 1(1):65–79

    CAS  Google Scholar 

  • Velmurugan P, Cho M, Lim S-S, Seo S-K, Myung H, Bang K-S, Sivakumar S, Cho K-M, Oh B-T (2015) Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Mater Lett 138:272–275

    CAS  Google Scholar 

  • Vinoth V, Wu JJ, Asiri AM, Anandan S (2017) Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason Sonochem 39:363–373

    CAS  PubMed  Google Scholar 

  • Wang C, Hu L, Lin Y, Poeppelmeier K, Stair P, Marks L (2017) Controllable ALD synthesis of platinum nanoparticles by tuning different synthesis parameters. J Phys D Appl Phys 50(41):415301

    Google Scholar 

  • WHO (2020) Vector-borne diseases. WHO. https://www.who.int/en/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 17th November 2020 2020

  • Yadav SK, Vasu V (2016) Synthesis and characterization of copper nanoparticles, using combination of two different sizes of balls in wet ball milling. Int J Emerg Trends Sci Technol 3(04):2348–9480

    Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. https://doi.org/10.5101/nbe.v9i1.p9-14

  • Yu C-H, Tam K, Tsang ES (2008) Chemical methods for preparation of nanoparticles in solution. Handbook of Metal Physics 5:113–141

    Google Scholar 

  • Zhu X, Pathakoti K, Hwang H-M (2019) Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Green synthesis, characterization and applications of nanoparticles. Elsevier, pp 223–263

    Google Scholar 

Download references

Acknowledgments

The author (Dr. Jaison Jeevanandam) acknowledges the support of FCT-Fundação para a Ciência e a Tecnologia (Base Fund UIDB/00674/2020 and Programmatic Fund UIDP/00674/2020, Portuguese Government Funds), ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação through the project M1420-01-0145-FEDER-000005-CQM+ (Madeira 14-20 Program). All the other authors would like to thank their respective department and university for the support during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suresh, M., Balu, S., Jose, S.C., Jeevanandam, J. (2022). Phytosynthesized Metal Nanomaterials as an Effective Mosquitocidal Agent. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_12

Download citation

Publish with us

Policies and ethics