Skip to main content
Log in

Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Spring wheat (Triticum aestivum L.) breeding goals in western Canada include good agronomic characteristics and good end-use quality, and also moderate to elevated resistance to diseases of economic importance. In this study, we aimed to identify quantitative trait loci (QTL) associated with resistance to common bunt (Tilletia tritici and Tilletia laevis), tan spot (Pyrenophora tritici-repentis), leaf rust (Puccinia triticina), and stripe rust (Puccinia striiformis f. sp. tritici). A total of 167 recombinant inbred lines (RILs) derived from a cross between two spring wheat cultivars, ‘Attila’ and ‘CDC Go’, were evaluated for reactions to the four diseases in nurseries from three to eight environments, and genotyped with the Wheat 90K SNP array and three gene-specific markers (Ppd-D1, Vrn-A1, and Rht-B1). The RILs exhibited transgressive segregation for all four diseases, and we observed several lines either superior or inferior to the parents. Broad-sense heritability varied from 0.25 for leaf rust to 0.48 for common bunt. Using a subset of 1203 informative markers (1200 SNPs and 3 gene-specific markers) and average disease scores across all environments, we identified two QTLs (QCbt.dms-1B.2 and QCbt.dms-3A) for common bunt, and three QTLs each for tan spot (QTs.dms-2B, QTs.dms-2D, and QTs.dms-6B), leaf rust (QLr.dms-2D.1, QLr.dms-2D.2, and QLr.dms-3A), and stripe rust (QYr.dms-3A, QYr.dms-4A, and QYr.dms-5B). Each QTL individually explained between 5.9 and 18.7% of the phenotypic variation, and altogether explained from 21.5 to 26.5% of phenotypic and from 52.2 to 86.0% of the genetic variation. The resistance alleles for all QTLs except one for stripe rust (QYr.dms-5B) were from CDC Go. Some of the QTLs are novel, while others mapped close to QTLs and/or genes reported in other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeysekara NS, Friesen TL, Liu ZH, McClean PE, Faris JD (2010) Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat. Plant Genome 3:179–189

    Article  CAS  Google Scholar 

  • Aboukhaddour R, Turkington TK, Strelkov SE (2013) Race structure of Pyrenophora triciti-repentis (tan spot of wheat) in Alberta, Canada. Can J Plant Pathol 35:256–268

    Article  CAS  Google Scholar 

  • Agenbag GM, Pretorius ZA, Boyd LA, Bender CM, Prins R (2012) Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. Theor Appl Genet 125:109–120

    Article  CAS  PubMed  Google Scholar 

  • Asif M, Yang RC, Navabi A, Iqbal M, Kamran A, Lara EP, Randhawa H, Pozniak C, Spaner D (2015) Mapping QTL, selection differentials, and the effect of Rht-B1 under organic and conventionally managed systems in the Attila × CDC go spring wheat mapping population. Crop Sci 55:1129–1142

    Article  Google Scholar 

  • Bansal UK, Forrest KL, Hayden MJ, Miah H, Singh D, Bariana HS (2011) Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr M, Matiasch L, Mascher F, Vida G, Ittu M, Robert O, Holdgate S, Flath K, Neumayer A, Buerstmayr H (2014) Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor Appl Genet 127:2011–2028

    Article  PubMed  PubMed Central  Google Scholar 

  • Case AJ, Naruoka Y, Chen XM, Garland-Campbell KA, Zemetra RS, Carter AH (2014) Mapping stripe rust resistance in a BrundageXCoda winter wheat recombinant inbred line population. PLoS One 9:e91758

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XM, Jones SS, Line RF (1995) Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology 85:375–338

    Article  Google Scholar 

  • Chu CG, Chao S, Friesen TL, Faris JD, Zhong S, SS X (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    Article  CAS  Google Scholar 

  • Chu CG, Friesen TL, SS X, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  CAS  PubMed  Google Scholar 

  • Ciuffetti LM, Francl LJ, Ballance GM, Bockus WW, Lamari L, Meinhardt SW, Rasmussen JB (1998) Standardization of toxin nomenclature in the Pyrenophora tritici-repentis/wheat interaction. Can J Plant Pathol 20:421–424

    Article  Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 187:911–919

    Article  CAS  PubMed  Google Scholar 

  • Dakouri A, McCallum BD, Radovanovic N, Cloutier S (2013) Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol Breed 32:663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta D, Nayar SK, Prashar M, Bhardwaj SC (2009) Inheritance of temperature-sensitive leaf rust resistance and adult plant stripe rust resistance in common wheat cultivar PBW343. Euphytica 166:277–282

    Article  Google Scholar 

  • Dumalasová V, Simmonds J, Bartoš P, Snape J (2012) Location of genes for common bunt resistance in the European winter wheat cv. Trintella. Euphytica 186:257–264

    Article  Google Scholar 

  • Dyck PL (1979) Identification of the gene for adult-plant leaf rust resistance in Thatcher. Can J Plant Sci 59:499–501

    Article  Google Scholar 

  • Dyck PL, Samborski DJ (1974) Inheritance of virulence in Puccinia recondita of alleles at the Lr2 locus for resistance in wheat. Can J Genet Cytol 16:323–332

    Article  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Liu Z, SS X (2013) Genetics of tan spot resistance in wheat. Theor Appl Genet 126:2197–2217

    Article  CAS  PubMed  Google Scholar 

  • Fofana B, Humphreys DG, Cloutier S, McCartney CA, Somers DJ (2008) Mapping quantitative trait loci controlling common bunt resistance in a doubled haploid population derived from the spring wheat cross RL4452 × AC domain. Mol Breed 21:317–325

    Article  CAS  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  CAS  PubMed  Google Scholar 

  • Galaev AV, Babayantz LT, Sivolap YM (2006) Molecular marker mapping of resistance gene to common bunt transferred from Aegilops cylindrica into bread wheat. Cytol Genet 40:3–11

    CAS  Google Scholar 

  • Gaudet DA, Puchalski BL (1989) Races of common bunt (Tilletia caries and T. foetida) of wheat in western Canada. Can J Plant Pathol 11:415–418

    Article  Google Scholar 

  • Goates BJ (1996) Common bunt and dwarf bunt. In: Wilcoxson RD, Saari EE (eds) Bunt and smut diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, pp 12–25

    Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Lan CX, Huerta-Espino J, Calvo-Salazar V, Bansal UK, Bariana HS, Lagudah ES (2015) Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Dis 99:508–511

    Article  CAS  Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149

    Article  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Klarquist EF, Chen XM, Carter AH (2016) Novel QTL for stripe rust resistance on chromosomes 4A and 6B in soft white winter wheat cultivars. Agronomy 6

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Lamari L, Gilbert J, Tekauz A (1998) Race differentiation in Pyrenophora tritici-repentis and survey of physiologic variation in western Canada. Can J Plant Pathol 20:396–400

    Article  Google Scholar 

  • Lamari L, Strelkov SE (2010) The wheat/Pyrenophora tritici-repentis interaction: progress towards an understanding of tan spot disease. Can J Plant Pathol 32:4–10

    Article  CAS  Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Luig NH, McIntosh RA (1968) Location and linkage of genes on wheat chromosome 2D. Can J Genet Cytol 10:99–105

    Article  Google Scholar 

  • Maccaferri M, Mantovani P, Tuberosa R, Deambrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240

    Article  CAS  PubMed  Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541

    Article  CAS  Google Scholar 

  • McCallum BD, DePauw RM (2008) A review of wheat cultivars grown in the Canadian prairies. Can J Plant Sci 88:649–677

    Article  Google Scholar 

  • McCallum BD, Fetch T, Chong J (2007) Cereal rust control in Canada. Aust J Agric Res 58:639–647

    Article  Google Scholar 

  • McCallum BD, Humphreys DG, Somers DJ, Dakouri A, Cloutier S (2012) Allelic variation for the rust resistance gene Lr34/Yr18 in Canadian wheat cultivars. Euphytica 183:261–274

    Article  CAS  Google Scholar 

  • McIntosh RA, Dubcovsky WJ, Morris CA, Appels R, Xia XC (2012) Catalogue of gene symbols for wheat: 2012 supplement. KOMUGI Integrated Wheat Science Database Available online at http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283

    Article  Google Scholar 

  • Menzies JG, Knox RE, Popovic Z, Procunier JD (2006) Common bunt resistance gene Bt10 located on wheat chromosome 6D. Can J Plant Sci 86:1409–1412

    Article  CAS  Google Scholar 

  • Milus EA, Lee KD, Brown-Guedira G (2015) Characterization of stripe rust resistance in wheat lines with resistance gene Yr17 and implications for evaluating resistance and virulence. Phytopathology 105:1123–1130

    Article  PubMed  Google Scholar 

  • Park RF, Mohler V, Nazari K, Singh D (2014) Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat. TAG Theor Appl Genet 127:2041–2049

    Article  CAS  PubMed  Google Scholar 

  • Perez-Lara E, Semagn K, Chen H, Iqbal M, N’Diaye A, Kamran A, Navabi A, Pozniak C, Spaner D (2016) QTLs associated with agronomic traits in the cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers. PLoS One 11:e0160623

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Lara E, Semagn K, Tran AN, Ciechanowska I, Chen H, Iqbal M, N’Diaye A, Pozniak C, Strelkov SE, Hucl PJ, Graf RJ, Randhawa H, Spaner D (2017) Population structure and genomewide association analysis of resistance to disease and insensitivity to Ptr toxins in Canadian spring wheat using 90K SNP array. Crop Sci 57:1522–1539

    Article  Google Scholar 

  • Randhawa H, Puchalski BJ, Frick M, Goyal A, Despins T, Graf RJ, Laroche A, Gaudet DA (2012) Stripe rust resistance among western Canadian spring wheat and triticale varieties. Can J Plant Sci 92:713–722

    Article  CAS  Google Scholar 

  • Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES (2006) Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

    Article  CAS  PubMed  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Article  Google Scholar 

  • Scmidt JW, Morris R, Johnson VA (1969) Monosomic analysis for bunt resistance in derivatives of Turkey and Oro Wheats1. Crop Sci 9:286–288

    Article  Google Scholar 

  • Sears E, Schaller C, Briggs F (1960) Identification of the chromosome carrying the Martin gene for resistance of wheat to bunt. Can J Genet Cytol 2:262–267

    Article  Google Scholar 

  • Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Kumar S, Campbell HL (2016a) Genetic mapping of common bunt resistance and plant height QTL in wheat. Theor Appl Genet 129:243–256

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Crossa J, Duveiller E, Singh RP, Djurle A (2016b) Association mapping for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in CIMMYTs historical bread wheat set. Euphytica 207:515–525

    Article  CAS  Google Scholar 

  • Singh PK, Mergoum M, Ali S, Adhikari TB, Elias EM, Anderson JA, Glover KD, Berzonsky WA (2006) Evaluation of elite wheat germ plasm for resistance to tan spot. Plant Dis 90:1320–1325

    Article  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world's wheat crop? Adv Agron:271–309

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88:890–894

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops Cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Indu S, Sehgal SK, Bains NS, Guo ZG, Nelson JC, Bowden RL (2007) Molecular mapping of QTLs for Karnal bunt resistance in two recombinant inbred populations of bread wheat. Theor Appl Genet 116:147–154

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Royo C (2015) Dissecting the genetic architecture of leaf rust resistance in wheat by QTL meta-analysis. Phytopathology 105:1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SE, Lamari L (2003) Host-parasite interactions in tan spot [Pyrenophara tritici-repentis] of wheat. Can J Plant Pathol 25:339–349

    Article  CAS  Google Scholar 

  • Strelkov SE, Lamari L, Ballance GM (1999) Characterization of a host-specific protein toxin (Ptr ToxB) from Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 12:728–732

    Article  CAS  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Tadesse W, Manes Y, Singh RP, Payne T, Braun HJ (2010) Adaptation and performance of CIMMYT spring wheat genotypes targeted to high rainfall areas of the world. Crop Sci 50:2240–2248

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Knox RE, Depauw RM, Clarke FR, Clarke JM, Thomas JB (2009) Markers to a common bunt resistance gene derived from ‘Blizzard’ wheat (Triticum aestivum L.) and mapped to chromosome arm 1BS. Theor Appl Genet 119:541–553

    Article  CAS  PubMed  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Ortiz Islas S, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bai G, Carver BF, Shaner GE, Hunger RM (2005) Molecular characterization of slow leaf-rusting resistance in wheat. Crop Sci 45:758–765

    Article  CAS  Google Scholar 

  • Zou J, Semagn K, Iqbal M, N’Diaye A, Chen H, Asif M, Navabi A, Perez-Lara E, Pozniak C, Yang RC, Randhawa H, Spaner D (2017a) Mapping QTLs controlling agronomic traits in the Attila × CDC Go spring wheat population under organic management using 90K SNP array. Crop Sci:365–377

  • Zou J, Semagn K, Iqbal M, N’Diaye A, Chen H, Asif M, Navabi A, Perez-Lara E, Pozniak C, Yang RC, Randhawa H, Spaner D (2017b) QTLs associated with agronomic traits in the Attila × CDC Go spring wheat population evaluated under conventional management. PLoS One 12:e0171528

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Klaus Strenzke, Mark Virginillo, and all other research technicians for evaluating the population across multiple wheat disease nurseries in this study. This involved a small army of individuals over the years from both the University of Alberta’s and Agriculture and Agri-Food Canada’s Lethbridge wheat breeding programs.

Funding

This research was supported by grants to the University of Alberta wheat breeding program from the Alberta Crop Industry Development Fund, Alberta Wheat Commission, Agriculture and Agri-Food Canada, Western Grains Research Foundation Endowment Fund and Core Program check-off funds to D. Spaner. This work was conducted in part within the project “Canadian Triticum Advancement Through Genomics (CTAG).” We would like to acknowledge CTAG funding provided by the Saskatchewan Ministry of Agriculture, Western Grains Research Foundation, Agriculture and Agri-Food Canada, Genome Canada, Genome Prairie, Genome Alberta, and Alberta Innovates. The study was also supported by Chinese Government Scholarship to Jun Zou and Hua Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Spaner.

Electronic supplementary material

Supplemental Table 1

Summary of the 5667 SNPs and three gene specific markers (Ppd-D1, Rht-B1, and Vrn-A1) integrated into the linkage map of ‘Attila’ × ‘CDC Go’ RIL population and a subset of 1203 markers used for QTL mapping. (XLSX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Semagn, K., Chen, H. et al. Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Mol Breeding 37, 144 (2017). https://doi.org/10.1007/s11032-017-0746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0746-1

Keywords

Navigation