Skip to main content
Log in

Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is an economically important foliar disease in the major wheat growing areas throughout the world. Multiple races of the pathogen have been characterized based on their ability to cause necrosis and/or chlorosis on differential wheat lines. In this research, we evaluated a population of recombinant inbred lines derived from a cross between the common wheat varieties Grandin and BR34 for reaction to tan spot caused by Ptr races 1–3 and 5. Composite interval mapping revealed QTLs on the short arm of chromosome 1B and the long arm of chromosome 3B that were significantly associated with resistance to all four races. The effects of the two QTLs varied for the different races. The 1B QTL explained from 13% to 29% of the phenotypic variation, whereas the 3B QTL explained from 13% to 41% of the variation. Additional minor QTLs were detected but not associated with resistance to all races. The host-selective toxin Ptr ToxA, which is produced by races 1 and 2, was not a significant factor in the development of disease in this population. The race-nonspecific resistance derived from BR34 may take precedence over the gene-for-gene interaction known to be associated with the wheat–Ptr system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson JA, Effertz RJ, Faris JD, Francl LJ, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to Pyrenophora tritici-repentis necrosis-inducing toxin in durum and common wheat. Phytopathology 89:293–297

    CAS  Google Scholar 

  • Bered F, Barbosa-Neto JF, de Carvalho FIF (2002) Genetic variability in common wheat germplasm based on coefficients of parentage. Gen Mol Biol 25:211–215

    CAS  Google Scholar 

  • Cheong J, Wallwork H, Williams KJ (2004) Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Aust J Agric Res 55:315–319

    Article  Google Scholar 

  • Effertz RJ, Anderson JA, Francl LJ (2001) Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 91:572–578

    CAS  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    CAS  Google Scholar 

  • Elias E, Cantrell RG, Hosford RM Jr (1989) Heritability of resistance to tan spot in durum wheat and its association with other agronomic traits. Crop Sci 29:299–304

    Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    CAS  PubMed  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Rasmussen JB, Ali S, Kwon CY, Francl LJ, Meinhardt SW (2002) Reaction to Pyrenophora tritici-repentis race 1 by wheat mutants insensitive to Ptr ToxA. Phytopathology 92:38–42

    CAS  Google Scholar 

  • Friesen TL, Ali S, Kianian S, Francl LJ, Rasmussen JB (2003) Role of host sensitivity to Ptr ToxA in development of tan spot of wheat. Phytopathology 93:397–401

    CAS  Google Scholar 

  • Gamba FM, Lamari L (1998) Mendelian inheritance of resistance to tan spot (Pyrenophora tritici-repentis) in selected genotypes of durum wheat (Triticum turgidum). Can J Plant Pathol 20:408–414

    Google Scholar 

  • Gamba FM, Lamari L, Brule-Babel A (1998) Inheritance of race-specific necrotic and chlorotic reactions induced by Pyrenophora tritici-repentis in hexaploid wheats. Can J Plant Pathol 20:401–407

    Google Scholar 

  • Haen KM, Lu HJ, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line cross using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Hu J, Vick BA (2003) TRAP (target region amplification polymorphism), a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lamari L, Bernier CC (1989a) Evaluation of wheat lines and cultivars for reaction to tan spot Pyrenophora tritici-repentis based on lesion size. Can J Plant Pathol 11:49–56

    Google Scholar 

  • Lamari L, Bernier CC (1989b) Toxin of Pyrenophora tritici-repentis: host-specificity, significance in disease, and inheritance of host reaction. Phytopathology 79:740–744

    CAS  Google Scholar 

  • Lamari L, Bernier CC (1991) Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 81:1092–1095

    Google Scholar 

  • Lamari L, Sayoud R, Boulif M, Bernier CC (1995) Identification of a new race of Pyrenophora tritici-repentis: implications for the current pathotype classification system. Can J Plant Pathol 17:312–318

    Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lee TS, Gough FJ (1984) Inheritance of Septoria leaf blotch (S. tritici) and Pyrenophora tan spot (P. tritici-repentis) resistance in Triticum aestivum cv. Carifen 12. Plant Dis 68:848–851

    Google Scholar 

  • Manly KK, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. Proceedings of the ninth international wheat genetics symposium, vol 5. University Extension Press, University of Saskatchewan, Saskatoon, Saskatchewan

  • Nagle BJ, Frohberg RC, Hosford RM Jr (1982) Inheritance of resistance to tan spot of wheat. In: Hosford RM Jr (ed) Tan spot of wheat and related diseases workshop. North Dakota Agricultural Experimental Station, Fargo, pp 40–45

    Google Scholar 

  • Orolaza NP, Lamari L, Balance GM (1995) Evidence of a host specific chlorosis toxin from Pyrenophora tritici-repentis, the causal agent of tan spot of wheat. Phytopathology 85:1282–1287

    CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal WW (1998) A microsatellite map of wheat. Genetics 41:2007–2023

    Google Scholar 

  • Sykes EE, Bernier CC (1991) Qualitative inheritance of tan spot resistance in hexaploid, tetraploid, and diploid wheat. Can J Plant Pathol 13:38–44

    Google Scholar 

  • Tomás A, Bockus WW (1987) Cultivar specific toxicity of culture filtrate of Pyrenophora tritici-repentis. Phytopathology 77:1337–1366

    Google Scholar 

  • Tuori RP, Wolpert TJ, Ciuffetti LM (1995) Purification and immunological characterization of toxic components from cultures of Pyrenophora tritici-repentis. Mol Plant–Microbe Interact 8:41–48

    CAS  PubMed  Google Scholar 

  • Weise MV (1987) Compendium of wheat diseases, 2nd edn. APS, St. Paul

    Google Scholar 

  • Zhang H-F, Francl LJ, Jordahl JG, Meinhardt SW (1997) Structural and physical properties of a necrosis-inducing toxin from Pyrenophora tritici-repentis. Phytopathology 87:154–160

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J.A. Anderson for providing the mapping population and S.W. Meinhardt for providing purified Ptr ToxA. This research was supported by USDA–ARS CRIS projects 5442-22000-030-00D and 5442-21000-037-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Faris.

Additional information

Communicated by B. Keller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faris, J.D., Friesen, T. Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111, 386–392 (2005). https://doi.org/10.1007/s00122-005-2033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2033-5

Keywords

Navigation