Skip to main content
Log in

Genetics of tan spot resistance in wheat

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Tan spot is a devastating foliar disease of wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Much has been learned during the past two decades about the genetics of wheat–P. tritici-repentis interactions. Research has shown that the fungus produces at least three host-selective toxins (HSTs), known as Ptr ToxA, Ptr ToxB, and Ptr ToxC, that interact directly or indirectly with the products of the dominant host genes Tsn1, Tsc2, and Tsc1, respectively. The recent cloning and characterization of Tsn1 provided strong evidence that the pathogen utilizes HSTs to subvert host resistance mechanisms to cause disease. However, in addition to host–HST interactions, broad-spectrum, race non-specific resistance QTLs and recessively inherited qualitative ‘resistance’ genes have been identified. Molecular markers suitable for marker-assisted selection against HST sensitivity genes and for race non-specific resistance QTLs have been developed and used to generate adapted germplasm with good levels of tan spot resistance. Future research is needed to identify novel HSTs and corresponding host sensitivity genes, determine if the recessively inherited resistance genes are HST insensitivities, extend the current race classification system to account for new HSTs, and determine the molecular basis of race non-specific resistance QTLs and their relationships with host–HST interactions at the molecular level. Necrotrophic pathogens such as P. tritici-repentis are likely to become increasingly significant under a changing global climate making it imperative to further characterize the wheat–P. tritici-repentis pathosystem and develop tan spot resistant wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeysekara NS, Friesen TL, Liu ZH, McClean PE, Faris JD (2010) Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat. Plant Genome 3:179–189

    Article  CAS  Google Scholar 

  • Adee EA, Pfender WF (1989) The effect of primary inoculum level of Pyrenophora tritici-repentis on tan spot epidemic development in wheat. Phytopathology 79:873–877

    Article  Google Scholar 

  • Adikari TB, Bai J, Meinhardt SW, Gurung S, Myfield M, Patel J, Ali S, Gudmestad NC, Rasumussen JB (2009) Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 22:1056–1068

    Article  CAS  Google Scholar 

  • Ali S, Gurung S, Adhikari TB (2010) Identification and characterization of novel isolates of Pyrenophora tritici-repentis from Arkansas. Plant Dis 94:229–235

    Article  CAS  Google Scholar 

  • Anderson JA, Effertz RJ, Faris JD, Francl LJ, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to a Pyrenophora tritici-repentis necrosis-inducing toxin in durum and common wheat. Phytopathology 89:293–297

    Article  PubMed  CAS  Google Scholar 

  • Andrie RM, Schoch CL, Hedges R, Spatafora JW, Ciuffetti LM (2008) Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of the sister species Pyrenophora bromi and other members of the Ascomycota. Fungal Gen Biol 45:363–377

    Article  CAS  Google Scholar 

  • Antoni EA, Rybak K, Tucker MP, Hane JK, Solomon PS, Drenth A, Shankar M, Oliver RP (2010) Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis. Aust Plant Pathol 39:36–68

    Article  CAS  Google Scholar 

  • Bockus WW, Claasen MM (1992) Effects of crop rotation and residue management practices on severity of tan spot of winter wheat. Plant Dis 76:633–636

    Article  Google Scholar 

  • Bockus WW, De Wolf ED, Gill BS, Jardine DJ, Stack JP, Bowden RL, Fritz AK, and Martin TJ (2011) Historical durability of resistance to wheat diseases in Kansas. Plant Health Progress. doi:10.1094/PHP-2011-0802-01-RV

  • Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  • Cheong J, Wallwork H, Williams KJ (2004) Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbook. Aust J Agric Res 55:315–319

    Article  Google Scholar 

  • Chu CG, Friesen TL, Faris JD, Xu SS (2008a) Evaluation of seedling resistance to tan spot and Stagonospora nodorum blotch in tetraploid wheat. Crop Sci 48:1107–1116

    Article  Google Scholar 

  • Chu CG, Friesen TL, Xu SS, Faris JD (2008b) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  PubMed  CAS  Google Scholar 

  • Chu CG, Chao S, Friesen TL, Faris JD, Zhong S, Xu SS (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    Article  CAS  Google Scholar 

  • Ciuffetti LM, Tuori RP (1999) Advances in the characterization of the Pyrenophora tritici-repentis-wheat interaction. Phytopathology 89:444–449

    Article  PubMed  CAS  Google Scholar 

  • Ciuffetti LM, Francl LJ, Ballance GM, Bockus WW, Lamari L, Meinhardt SW, Rasmussen JB (1998) Standardization of toxin nomenclature in the Pyrenophora tritici-repentis/wheat interaction. Can J Plant Pathol 20:421–424

    Article  Google Scholar 

  • Ciuffetti LM, Manning VA, Martinez JP, Pandelova I, Andrie RM (2003) Proteinaceous toxins of Pyrenophora tritici-repentis and investigation of the site-of-action of Ptr ToxA. In: Rasmussen JB, Friesen TL, Ali S (eds) Proceedings of the fourth international wheat tan spot and spot blotch workshop. North Dakota Agric Exp Station, Fargo, pp 96–102

    Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis—wheat interaction. New Phytol 187:911–919

    Article  PubMed  CAS  Google Scholar 

  • Cox DJ, Hosford RM Jr (1987) Resistant winter wheats compared at different growth stages and leaf positions for tan spot severity. Plant Dis 71:883–886

    Article  Google Scholar 

  • Cox TS, Raupp WJ, Wilson DL, Gill BS, Leath S, Bockus WW, Browder LE (1992) Resistance to foliar diseases in a collection of Triticum tauschii germ plasm. Plant Dis 76:1061–1064

    Article  Google Scholar 

  • De Wolf ED, Effertz RJ, Ali S, Francl LJ (1998) Vistas of tan spot research. Can J Plant Pathol 20:349–370

    Article  Google Scholar 

  • Diedicke H (1902) Uber den Zusammenhang zwischen Pleospora—und Helminthosporium—Arten. Centralblatt für Bakteriologie und Parasitenkunde Jena Abt 9:317–329

    Google Scholar 

  • Dreschler C (1923) Some graminicolous species of Helminthosporium I. J Agric Res 24:641–670

    Google Scholar 

  • Duguid SD, Brule-Babel AL (2001) Inheritance and interaction of spring wheat (Triticum aestivum L.) resistance to race 2 and race 3 of Pyrenophora tritici-repentis (Died.) Drechs. Can J Plant Sci 81:527–533

    Article  Google Scholar 

  • Effertz RJ, Anderson JA, Francl LJ (2001) Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 91:572–578

    Article  PubMed  CAS  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    Article  PubMed  CAS  Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opinion Plant Biol 13:472–477

    Article  CAS  Google Scholar 

  • Elias E, Cantrell RG, Hosford RM Jr (1989) Heritability of resistance to tan spot in durum wheat and its association with other agronomic traits. Crop Sci 29:299–304

    Article  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot of wheat. Theor Appl Genet 111:386–392

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Friesen TL (2009) Reevaluation of a tetraploid wheat population indicates that the Tsn1-ToxA interaction is the only factor governing susceptibility to Stagonospora nodorum blotch. Phytopathology 99:906–912

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  • Faris JD, Zhang Z, Lu HJ, Lu SW, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Zhang Z, Rasmussen JB, Friesen TL (2011) Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Mol Plant-Microbe Interact 24:1419–1426

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Abeysekara NS, McClean PE, Xu SS, Friesen TL (2012) Tan spot susceptibility governed by the Tsn1 locus and non race-specific resistance QTL in a population derived from the wheat lines Salamouni and Katepwa. Mol Breed 30:1669–1678

    Article  Google Scholar 

  • Flor HH (1956) The complimentary genetics systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Faris JD (2010) Characterization of the wheat-Stagonospora nodorum disease system—what is the molecular basis of this quantitative necrotrophic disease interaction? Can J Plant Pathol 32:20–28

    Article  CAS  Google Scholar 

  • Friesen TL, Ali S, Kianian S, Francl LJ, Rasmussen JB (2003) Role of host sensitivity to Ptr ToxA in development of tan spot of wheat. Phytopathology 93:397–401

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Xu SS, Harris MO (2008) Stem rust, tan spot, Stagonospora nodorum blotch, and Hessian fly resistance in Langdon durum–Aegilops tauschii synthetic hexaploid wheat lines. Crop Sci 48:1062–1070

    Article  Google Scholar 

  • Gamba FM, Lamari L (1998) Mendelian inheritance of resistance to tan spot (Pyrenophora tritici-repentis) in selected genotypes of durum wheat (Triticum turgidum). Can J Plant Pathol 20:408–414

    Article  Google Scholar 

  • Gamba FM, Lamari L, Brule-Babel AL (1998) Inheritance of race-specific necrotic and chlorotic reactions induced by Pyrenophora tritici-repentis in hexaploid wheats. Can J Plant Pathol 20:401–407

    Article  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Haen KM, Lu HJ, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    Article  CAS  Google Scholar 

  • Hosford RM Jr (1971) A form of Pyrenophora trichostoma pathogenic to wheat and other grasses. Phytopathology 61:28–32

    Article  Google Scholar 

  • Hosford RM Jr (1982) Tan spot—developing knowledge 1902–1981, virulent races and differentials, methodology, rating systems, other leaf diseases, literature. In: Hosford, RM Jr (ed) Tan spot of wheat and related diseases workshop. North Dakota Agric Exp Station, Fargo, pp 1–24

  • Lamari L, Bernier CC (1989a) Virulence of isolates of Pyrenophora tritici-repentis on 11 wheat cultivars and cytology of the differential host reactions. Can J Plant Pathol 11:284–290

    Article  Google Scholar 

  • Lamari L, Bernier CC (1989b) Evaluations of wheat lines and cultivars to tan spot [Pyrenophora tritici-repentis] based on lesion type. Can J Plant Pathol 11:49–56

    Article  Google Scholar 

  • Lamari L, Bernier CC (1989c) Toxin of Pyrenophora tritici-repentis: host-specificity, significance in disease, and inheritance of host reaction. Phytopathology 79:740–744

    Article  CAS  Google Scholar 

  • Lamari L, Bernier CC (1991) Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 81:1092–1095

    Article  Google Scholar 

  • Lamari L, Strelkov SE (2010) The wheat/Pyrenophora tritici-repentis interaction: progress towards an understanding of tan spot disease. Can J Plant Pathol 32:4–10

    Article  CAS  Google Scholar 

  • Lamari L, Bernier CC, Smith RB (1991) Wheat genotypes that develop both tan necrosis and extensive chlorosis in response to isolates of Pyrenophora tritici-repentis. Plant Dis 75:121–122

    Article  Google Scholar 

  • Lamari L, Sayoud R, Boulif M, Bernier CC (1995) Identification of a new race in Pyrenophora tritici-repentis: implications for the current pathotype classification system. Can J Plant Pathol 17:312–318

    Article  Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    Article  PubMed  CAS  Google Scholar 

  • Li HB, Yan W, Liu GR, Wen SM, Liu CJ (2011) Identification and validation of quantitative trait loci conferring tan spot resistance in the bread wheat variety Ernie. Theor Appl Genet 122:395–403

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci USA 104:14861–14866

    Article  PubMed  CAS  Google Scholar 

  • Lu H-J, Faris JD (2006) Macro- and microcolinearity between the genomic region of wheat chromosome 5B containing the Tsn1 gene and the rice genome. Funct Integr Genomics 6:90–103

    Article  PubMed  CAS  Google Scholar 

  • Lu H-J, Fellers JP, Friesen TL, Meinhardt SW, Faris JD (2006) Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet 112:1132–1142

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. MacGene 2008. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/

  • Meinhardt SW, Ali S, Ling H, Francl LJ (2003) A new race of Pyrenophora tritici-repentis that produces a putative host-selective toxin. In: Rasmussen JB, Friesen TL, Ali S (eds) Proceedings of the fourth international wheat tan spot and spot blotch workshop. North Dakota Agric Exp Station, Fargo, pp 117–119

    Google Scholar 

  • Misra AP, Singh RA (1972) Pathogenic differences amongst three isolates of Helminthosporium tritici-repentis and the performance of wheat varieties against them. Indian Phytopathol 25:350–353

    Google Scholar 

  • Morris JF, Carver BF, Hunger RM, Klatt AR (2010) Greenhouse assessment of seedling reaction to tan spot in synthetic hexaploid wheat. Crop Sci 50:952–959

    Article  Google Scholar 

  • Nagle BJ, Frohberg RC, Hosford RM Jr (1982) Inheritance and resistance to tan spot of wheat. In: Hosford RM Jr (ed) Tan spot of wheat and related diseases workshop. North Dakota Agric Exp Station, Fargo, pp 40–45

    Google Scholar 

  • Nagy ED, Bennetzen JL (2008) Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res 18:1918–1923

    Article  PubMed  CAS  Google Scholar 

  • Nisikado Y (1928) Preliminary notes on yellow spot diseases of wheat caused by Helminthosporium tritici-vulgaris Nisikado. Inst Agric Biol 4:103–109

    Google Scholar 

  • Oliver RE, Cai X, Wang R-C, Xu SS, Friesen TL (2008) Resistance to tan spot and Stagonospora nodorum blotch in wheat-alien species derivatives. Plant Dis 92:150–157

    Article  Google Scholar 

  • Orolaza NP, Lamari L, Ballance GM (1995) Evidence of a host-specific chlorosis toxin from Pyrenophora tritici-repentis, the causal agent of tan spot of wheat. Phytopathology 85:1282–1287

    Article  CAS  Google Scholar 

  • Pandelova I, Betts MF, Manning VA, Wilhelm LJ, Mockler TC, Ciuffetti LM (2009) Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. Mol Plant 2:1067–1083

    Article  PubMed  CAS  Google Scholar 

  • Pandelova I, Figueroa M, Wilhelm LJ, Manning VA, Mankaney AN, Mockler TC, Ciuffetti LM (2012) Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility. PLoS One 7:e40240. doi:10.1371/journal.pone.0040240

    Article  PubMed  CAS  Google Scholar 

  • Rees RG, Platz GJ (1983) Effects of yellow spot on wheat: comparison of epidemics at different stages of crop development. Aust J Agric Res 34:39–46

    Article  Google Scholar 

  • Rees RG, Platz GJ (1990) Sources of resistance to Pyrenophora tritici-repentis in bread wheats. Euphytica 45:59–69

    Google Scholar 

  • Rees RG, Platz GJ (1992) Tan spot and its control—some Australian experiences. In: Francl LJ, Krupinsky JM, McMullen MP (eds) Advances in tan spot research. North Dakota Agric Exp Station, Fargo, pp 1–9

    Google Scholar 

  • Rees RG, Platz GJ, Mayer RJ (1982) Yield losses in wheat from yellow spot: comparison of estimates derived from single tillers and plots. Aust J Agric Res 33:899–908

    Article  Google Scholar 

  • Riede CR, Francl LJ, Anderson JA, Jordhal JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36:771–777

    Article  Google Scholar 

  • Schilder AMC, Bergstrom GC (1990) Variation in virulence within the population of Pyrenophora tritici-repentis in New York. Phytopathology 80:84–90

    Article  Google Scholar 

  • Schilder AMC, Bergstrom GC (1994) Infection of wheat seed by Pyrenophora tritici-repentis. Can J Bot 72:510–519

    Article  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. MO Agr Exp Sta Res Bull 572:1–59

    Google Scholar 

  • Shabeer A, Bockus WW (1988) Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis 72:599–602

    Article  Google Scholar 

  • Siedler H, Obst A, Hsam SLK, Zeller FJ (1994) Evaluation for resistance to Pyrenophora tritici-repentis in Aegilops tauschii Coss. and synthetic hexaploid wheat amphiploids. Genet Res Crop Evol 41:27–34

    Article  Google Scholar 

  • Singh PK, Hughes GR (2005) Genetic control of resistance to tan necrosis induced by Pyrenophora tritici-repentis, races 1 and 2, in spring and winter wheat genotypes. Phytopathology 95:172–177

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Hughes GR (2006) Inheritance of resistance to the chlorosis component of tan spot of wheat caused by Pyrenophora tritici-repentis, races 1 and 3. Euphytica 152:413–420

    Article  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias E, Hughes GR (2006) Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 96:885–889

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Mergoum M, Ali S, Adhikari TB, Hughes GR (2008a) Genetic analysis of resistance to Pyrenophora tritici-repentis races 1 and 5 in tetraploid and hexaploid wheat. Phytopathology 98:702–708

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Mergoum M, Gonzalez-Hernandez JL, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2008b) Genetics and molecular mapping of resistance to necrosis-inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol Breed 21:293–304

    Article  CAS  Google Scholar 

  • Singh S, Bockus WW, Sharma I, Bowden RL (2008c) A novel source of resistance in wheat to Pyrenophora tritici-repentis race 1. Plant Dis 92:91–95

    Article  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010a) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379

    Article  CAS  Google Scholar 

  • Singh PK, Singh RP, Duveiller E, Mergoum M, Adhikari TB, Elias EM (2010b) Genetics of wheat-Pyrenophora tritici-repentis interactions. Euphytica 171:1–13

    Article  Google Scholar 

  • Stock WS, Brule-Babel AL, Penner GA (1996) A gene for resistance to a necrosis-inducing isolate of Pyrenophora tritici-repentis located on 5BL of Triticum aestivum cv. Chinese Spring. Genome 39:598–604

    Article  PubMed  CAS  Google Scholar 

  • Strelkov SE, Lamari L (2003) Host-parasite interactions in tan spot (Pyrenophora tritici-repentis) of wheat. Can J Plant Pathol 25:339–349

    Article  CAS  Google Scholar 

  • Strelkov SE, Lamari L, Ballance GM (1999) Characterization of a host-specific protein toxin (Ptr ToxB) from Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 12:728–732

    Article  CAS  Google Scholar 

  • Strelkov SE, Lamari L, Sayoud R, Smith RB (2002) Comparative virulence of chlorosis-inducing races of Pyrenophora tritici-repentis. Can J Plant Pathol 24:29–35

    Article  Google Scholar 

  • Sun X-C, Bockus WW, Bai GH (2010) Quantitative trait loci for resistance to Pyrenophora tritici-repentis race 1 in a Chinese wheat. Phytopathology 100:468–473

    Article  PubMed  Google Scholar 

  • Sutton JC, Vyn TJ (1990) Crop sequences and tillage practices in relation to diseases of winter wheat in Ontario. Can J Plant Pathol 12:358–368

    Article  Google Scholar 

  • Sykes EE, Bernier CC (1991) Qualitative inheritance of tan spot resistance in hexaploid, tetraploid, and diploid wheat. Can J Plant Pathol 13:38–44

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2006a) Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. × Aegilops tauschii Coss.). Crop Sci 46:1212–1217

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2006b) Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed 125:318–322

    Article  Google Scholar 

  • Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ (2007) Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet 114:855–862

    Article  PubMed  CAS  Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2008) Chromosome location of a gene conferring resistance to Pyrenophora tritici-repentis in Ethiopian wheat cultivars. Euphytica 162:423–430

    Article  CAS  Google Scholar 

  • Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ (2010) Chromosomal location and molecular mapping of a tan spot resistance gene in the winter wheat cultivar Red Chief. J Appl Genet 51:235–242

    Article  PubMed  CAS  Google Scholar 

  • Tekauz A (1976) Distribution, severity and relative importance of leaf spot disease of wheat in western Canada in 1974. Can Plant Dis Surv 56:36–40

    Google Scholar 

  • Tomas A, Bockus WW (1987) Cultivar-specific toxicity of culture filtrate of Pyrenophora tritici-repentis. Phytopathology 77:1337–1340

    Article  Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Article  PubMed  CAS  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    PubMed  CAS  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Ann Rev Phytopathol 40:251–285

    Article  CAS  Google Scholar 

  • Xu SS, Friesen TL, Mujeeb-Kazi A (2004) Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245

    Article  Google Scholar 

  • Zhang Z, Friesen TL, Simons KJ, Xu SS, Faris JD (2009) Development, identification, and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol Breed 23:35–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Timothy L. Friesen and Shaobin Zhong for critical review of the manuscript. The research conducted by JDF and SSX is funded by USDA-Agricultural Research Service CRIS Project 5442-22000-033-00D. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Faris.

Additional information

Communicated by R. K. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faris, J.D., Liu, Z. & Xu, S.S. Genetics of tan spot resistance in wheat. Theor Appl Genet 126, 2197–2217 (2013). https://doi.org/10.1007/s00122-013-2157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2157-y

Keywords

Navigation