Skip to main content
Log in

Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The Triticum turgidum ssp. dicoccum (2n = 4x = 28) accession MG5323 showed a useful level of resistance to leaf rust disease. A segregating population of 110 recombinant inbred lines (RILs), derived from a cross between cv Latino (T. turgidum spp. durum), susceptible to leaf rust, and MG5323 was evaluated for reactions of seedlings to two different Puccinia triticina isolates. Genotyping of the RILs was performed with different molecular markers (SSR, EST-SSR and SNP), leading to the construction of a linkage map containing 10,840 loci covering 14 chromosomes, with an average marker density of 0.22 cM/marker. Linkage analysis allowed the identification of three different regions significantly associated with leaf rust resistance, with MG5323 contributing the resistant alleles. A major resistance gene was detected on the short arm of chromosome 1B, explaining a total phenotypic variation ranging from 41.37 to 49.51 %. Two additional minor resistance genes located on chromosome 7B explained a phenotypic variation ranging between 17.77 and 25.81 %. No obvious positional relationships were observed when the map position of the genes was compared with those of other previously identified wheat leaf rust resistance genes, suggesting that new resistance sources to leaf rust were identified in the tetraploid background. A significant positive epistatic effect was detected between quantitative trait loci (QTLs) for each trait, indicating that different QTLs contribute different degrees of resistance. Analysis of the leaf rust responses of the RILs demonstrated that only lines bearing resistant alleles at both loci showed effective leaf rust resistance, indicating that the genes identified behave as complementary genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar-Rincon VH, Singh RP, Castillo-Gonzalez F, Huerta-Espino J (2001) Genes of leaf rust resistance in a synthetic hexaploid wheat. Revista de Fitotecnia Mexicana 24(2):161–169

    Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    CAS  Google Scholar 

  • Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P, Mastrangelo AM, Cattivelli L, Gadaleta A (2012) Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol Breed 30:79–92

    CAS  Google Scholar 

  • Blanco A, Simeone R, Cenci A, Gadaleta A, Tanzarella OA, Porceddu E, Salvi S, Tuberosa R, Figliuolo G, Spagnoletti P, Röder MS, Korzun V (2004) Extension of the “Messapia x dicoccoides” linkage map of Triticum turgidum (L.) Thell. Cell Mol Biol Lett 9:529–541

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575

    PubMed  Google Scholar 

  • Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    CAS  PubMed  Google Scholar 

  • Caldwell RM (1968) Breeding for general and/or specific plant disease resistance. In: Findlay KW, Shepherd KW (eds) Proceedings of the 3rd international wheat genetics symposium. Australian Academy of Science, Canberra, pp 263–272

    Google Scholar 

  • Chu CG, Friesen TL, Xu SS, Faris JD, Kolmer JA (2009) Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theor Appl Genet 119:263–269

    PubMed  Google Scholar 

  • Chu CG, Chao S, Friesen TL, Faris JD, Zhong S, Xu SS (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21(8):1703–1704

    PubMed  Google Scholar 

  • Dyck PL (1994) The transfer of leaf rust resistance from Triticum turgidum ssp. dicoccoides to hexaploid wheat. Plant Sci 74:671–673

    Google Scholar 

  • Dyck PL, Samborski DJ (1970) The genetics of two alleles for leaf rust resistance at the Lr14 locus in wheat. Can J Genet Cytol 12:689–694

    Google Scholar 

  • Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite “evolution”: directionality or bias? Nat Genet 11:360–362

    CAS  PubMed  Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    CAS  PubMed  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    CAS  PubMed  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    CAS  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Google Scholar 

  • Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262–269

    CAS  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A (2009) Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. Theor Appl Genet 118:1015–1025

    CAS  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    PubMed  Google Scholar 

  • Herrera-Foessel SA, Djurle A, Yuen J, Singh RP, William HM, Garcia V, Huerta-Espino J (2008) Identification and molecular characterization of leaf rust resistance gene Lr14a in durum wheat. Plant Dis 92:469–473

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan C, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1489

    CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    PubMed  Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of a new recessive powdery mildew resistance gene Pm42 in wheat derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    CAS  PubMed  Google Scholar 

  • Hussein S, Spies JJ, Pretorius ZA, Labuschagne MT (2005) Chromosome locations of leaf rust resistance genes in selected tetraploid wheat through substitution lines. Euphytica 141:209–216

    Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Google Scholar 

  • Kilian B, Ozkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the fertile crescent. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, Dordrecht, pp 81–118

    Google Scholar 

  • Knott DR (1989) The wheat rusts—breeding for resistance. Monographs on theoretical and applied genetics. Springer, Berlin

    Google Scholar 

  • Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449

    PubMed  Google Scholar 

  • Kolmer JA, Liu JQ (2002) Inheritance of leaf rust resistance in wheat cultivars AC Majestic, AC Splendor, and AC Karma. Can J Plant Pathol 24:327–331

    Google Scholar 

  • Kolmer JA, Jin Y, Long DL (2007) Wheat leaf and stem rust in the United States. Aust J Agric Res 58:631–638

    Google Scholar 

  • Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander E, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Law CN, Johnson R (1967) A genetic study of leaf rust resistance in wheat. Can J Genet Cytol 9:805–822

    Google Scholar 

  • Limpert E, Muller K (1994) Designation of pathotypes of plant pathogens. J Phytopathol 140:346–358

    Google Scholar 

  • Liu XM, Brown-Guedira GL, Hatchett JO, Chem M-S (2005) Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor Appl Genet 111:1308–1315

    CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, BenSalem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouab-bou H, Royo C, Slama A, Tuberosa R (2008a) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    PubMed Central  PubMed  Google Scholar 

  • Maccaferri M, Mantovani P, Tuberosa R, DeAmbrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008b) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240

    CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228

    CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catione I, Wenzl P, Thomson B, Carling J, Huttner E, De Ambrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    CAS  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    CAS  Google Scholar 

  • Marone D, Del Olmo AI, Laidò G, Sillero JC, Emeran AA, Russo MA, Ferragonio P, Giovanniello V, Mazzucotelli E, De Leonardis AM, De Vita P, Blanco A, Cattivelli L, Rubiales D, Mastrangelo AM (2009) Genetic analysis of durable resistance against leaf rust in durum wheat. Mol Breed 24:25–39

    CAS  Google Scholar 

  • Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    PubMed Central  PubMed  Google Scholar 

  • Matere A, Nocente F, Sereni L, L’Aurora A, Casini F, Pasquini M (2010) Monitoring of powdery mildew and leaf rust infections in Italy: behaviour of durum wheat cultivars. Annu Wheat Newslett 56:100–103. http://wheat.pw.usda.gov/ggpages/awn/56/TEXTFILES/ITALY.pdf

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124(2):163–180

    CAS  Google Scholar 

  • McIntosh RA, Dyck PL (1975) Cytogenetical studies in wheat. VII Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J Biol Sci 28:201–211

    Google Scholar 

  • McIntosh RA, Luig NH, Baker EP (1967) Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistances in Hope and related wheat cultivars. Aust J Biol Sci 20:1181–1192

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995a) Wheat rusts: an atlas of resistance genes. Kluwer, Dordrecht

    Google Scholar 

  • McIntosh RA, Friebe B, Jiang J, The D, Gill BS (1995b) Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation. Euphytica 82(2):141–147

    Google Scholar 

  • McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. US Agric Res Serv 42:34–121

  • Messmer MM, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    CAS  Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta MA, ElSaleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 102:177–186

    CAS  Google Scholar 

  • Nakagarha M (1986) Geographic distribution of gametophyte genes in wide crosses of rice cultivars. In: Khush GS (ed) Rice genetics—proceedings of the international rice genetics symposium. IRRI, Manila, pp 73–82

    Google Scholar 

  • Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48:97–107

    CAS  PubMed  Google Scholar 

  • Nelson JC, Singh RP, Autrique JE, Sorrells ME (1997) Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci 37:1928–1935

    CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Google Scholar 

  • Pasquini M (1988) Disease resistance in durum wheat: screening and utilization of primitive and wild species. In: Proceedings of the 3rd international symposium on durum wheat. http://eurekamag.com/research/001/800/001800820.php

  • Pasquini M, Pancaldi D, Casulli F (2003) Genetic variation in Italian populations of Puccinia recondita f.sp. tritici from 1990 to 2001. J Genet Breed 57:191–200

    Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    CAS  PubMed  Google Scholar 

  • Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96

    CAS  PubMed  Google Scholar 

  • Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite marker specific for D genome of bread wheat. Genome 43:689–697

    CAS  PubMed  Google Scholar 

  • Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    CAS  PubMed  Google Scholar 

  • Samborski DJ (1985) Wheat leaf rust. In: Roelfs AP, Bushnell WR (eds) Cereal rusts, vol II. Academic Press, New York, pp 39–59

    Google Scholar 

  • Sawhney RN, Sharma JB (1999) Novel complementary genes for adult plant leaf rust resistance in a wheat stock carrying the 1BL-1RS translocation. Plant Breed 118(3):269–271

    Google Scholar 

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484

    CAS  PubMed  Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Google Scholar 

  • Singh RP, McIntosh RA (1984a) Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. I. Genetic and linkage studies. Can J Genet Cytol 26:723–735

    Google Scholar 

  • Singh RP, McIntosh RA (1984b) Complementary genes for reaction to Puccinia recondita in Triticum aestivum. II. Cytogenetic studies. Can J Genet Cytol 26:736–742

    Google Scholar 

  • Singh H, Dhaliwal HS, Gill KS (1992) Diversity for leaf rust resistance in Triticum durum germplasm. Cereal Rusts Powdery Mildews Bull 20:62–67

    Google Scholar 

  • Singh D, Park RF, McIntosh RA (1999) Genetic relationship between the adult plant resistance gene Lr12 and the complementary gene Lr31 for seedling resistance to leaf rust in common wheat. Plant Pathol 48:567–573

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hung 35:133–139

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT wheats. Euphytica 179:175–186

    Google Scholar 

  • Singh D, Mohler V, Park RF (2013a) Discovery, characterization and mapping of wheat leaf rust resistance gene Lr71. Euphytica 190:131–136

    CAS  Google Scholar 

  • Singh A, Pandey MP, Singh AK, Knox RE, Ammar K, Clarke JM, Clarke FR, Singh RP, Pozniak CJ, DePauw RM, McCallum BD, Cuthbert RD, Randhawa HS, Fetch TG Jr (2013b) Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat. Mol Breed 31:405–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soliman AS, Heyne EG, Johnston CO (1963) Resistance to leaf rust in wheat derived from Aegilops umbellulata translocation lines. Crop Sci 3:254–256

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J et al (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot 9 Chinese spring inter varietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Sourdille P, Sukhwinder S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic–physical map relationships in wheat (Triticum aestivum L). Funct Integr Genomics 4:12–25

    CAS  PubMed  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    CAS  PubMed  Google Scholar 

  • Tanksley SD (1984) Linkage relationships and chromosomal locations of enzyme-coding genes in pepper, Capsicum annum. Chromosoma 89:352–360

    CAS  Google Scholar 

  • Thanh PT, Vladutu CI, Kianian SF, Thanh PT, Ishii T, Miyuki Nitta M, Nasuda S, Naoki Mori N (2013) Molecular genetic analysis of domestication traits in emmer wheat. I: map construction and QTL analysis using an F2 population. Biotechnology 27:3627–3637

    Google Scholar 

  • The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788-1–1251788125178811

    Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

    PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang E, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Stephen S, Luo M, Dvorak J, Mather D, Appels R, Dulferos R, Brown-Guedira G, Akhunova A, Feuillet C, Salse J, Morgante M, Pozniak C, Wieseke R, Plieske J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796

    CAS  PubMed  Google Scholar 

  • Watson IA, Stewart DM (1956) A comparison of the rust reaction of wheat varieties Gabo, Timstein, and Lee. Agron J 48:514–516

    Google Scholar 

  • Wierdl M, Dominska M, Peters TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146:769–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • William HM, Hoisington D, Singh RP, Gonzalez-de-Leon D (1997) Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome 40:253–260

    CAS  PubMed  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    CAS  PubMed  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    CAS  PubMed  Google Scholar 

  • Xing LF, Wang CF, Xia XC, He ZH, Chen WQ, Liu TG, Li ZF, Liu DQ (2014) Molecular mapping of leaf rust resistance gene LrFun in Romanian wheat line Fundulea 900. Mol Breed 33:931–937

    CAS  Google Scholar 

  • Xu X, Bai G, Carver B, Shaner GE, Hunger RM (2005a) Molecular characterization of slow leaf-rusting resistance in wheat. Crop Sci 45:758–765

    CAS  Google Scholar 

  • Xu XY, Bai GH, Carver BF, Shaner GE, Hunger RM (2005b) Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor Appl Genet 110:244–251

    PubMed  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    CAS  PubMed  Google Scholar 

  • Zhang HT, Knott DR (1990) Inheritance of leaf rust resistance in durum wheat. Crop Sci 30(6):1218–1222

    Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    CAS  PubMed  Google Scholar 

  • Zhang H, Xia XC, He ZH, Li X, Li ZF (2011) Molecular mapping of leaf rust resistance gene LrBi16 in Chinese wheat cultivar Bimai16. Mol Breed 28:527–534

    CAS  Google Scholar 

  • Zhou Y, Bui T, Auckland LD, Illiams CG (2002) Direct fluorescent primers are superior to M13-tailed primers for Pinus taeda microsatellites. Biotechniques 31:24–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Desiderio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2014_186_MOESM1_ESM.tif

Fig S1 Infection types produced by the parental lines against different P. triticina isolates. a) infection types produced by Latino and MG5323 challenged with five different leaf rust isolates; b) pictures of the leaf rust symptoms on Latino (LT) and MG5323 (MG) leaves obtained with isolates VMC03 and 12766 used for screening the RILs at 15 days after inoculation. (TIFF 2286 kb)

Fig S2 Pairwise recombination fractions and LOD scores for Latino × MG5323 linkage map. (TIFF 7119 kb)

11032_2014_186_MOESM3_ESM.tif

Fig S3 Frequency distribution of phenotypic reactions of RILs to leaf rust isolates VMC03 and 12766 expressed as infection type (IT) or as relative disease severity classes (RDS) considering two major classes: resistant (IT values between 0 and 5; RDS values from 0 to 50) and susceptible (IT values from 6 to 9; RDS values from 51 to 130). (TIFF 584 kb)

Supplementary material 4 (DOCX 14 kb)

Supplementary material 5 (DOCX 15 kb)

Supplementary material 6 (XLSX 283 kb)

Supplementary material 7 (DOCX 14 kb)

Supplementary material 8 (DOCX 26 kb)

Supplementary material 9 (XLSX 56 kb)

Supplementary material 10 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desiderio, F., Guerra, D., Rubiales, D. et al. Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Mol Breeding 34, 1659–1675 (2014). https://doi.org/10.1007/s11032-014-0186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0186-0

Keywords

Navigation