Skip to main content
Log in

Microbial production of 2,3-butanediol for industrial applications

  • Bioenergy/Biofuels/Biochemicals - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharmaceutical areas. However, its industrial production and usage are limited by the fairly high cost of its petro-based production. Several bio-based 2,3-BD production processes have been developed and their economic advantages over petro-based production process have been reported. In particular, many 2,3-BD-producing microorganisms including bacteria and yeast have been isolated and metabolically engineered for efficient production of 2,3-BD. In addition, several fermentation processes have been tested using feedstocks such as starch, sugar, glycerol, and even lignocellulose as raw materials. Since separation and purification of 2,3-BD from fermentation broth account for the majority of its production cost, cost-effective processes have been simultaneously developed. The construction of a demonstration plant that can annually produce around 300 tons of 2,3-BD is scheduled to be mechanically completed in Korea in 2019. In this paper, core technologies for bio-based 2,3-BD production are reviewed and their potentials for use in the commercial sector are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harden A, Walpole G (1906) 2,3-Butylene glycol fermentation by Aerobacter aerogenes. Proc R Soc Lond 77:399–405

    Article  CAS  Google Scholar 

  2. Othmer D, Bergen W, Shlechter N, Bruins P (1945) Liquid–liquid extraction data. Ind Eng Chem Res 37:890–894

    Article  CAS  Google Scholar 

  3. Jones MD (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:53. https://doi.org/10.1186/s13065-014-0053-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. White WC (2007) Butadiene production process overview. Chem Biol Interact 166:10–14. https://doi.org/10.1016/j.cbi.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  5. Gräfje H, Körnig W, Weitz H, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H (2012) Butanediols, butenediol, and butynediol. In: Ullmann’s encyclopedia of industrial chemical. https://doi.org/10.1002/14356007.a04_455

  6. Yang Z, Zhang Z (2019) Recent advances on production of 2,3-butanediol using engineered microbes. Biotechnol Adv 37:569–578. https://doi.org/10.1016/j.biotechadv.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  7. Cortes-Barco AM, Hsiang T, Goodwin PH (2010) Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann Appl Biol 157:179–189. https://doi.org/10.1111/j.1744-7348.20

    Article  CAS  Google Scholar 

  8. Baek HS, Woo BY, Yoo SJ, Joo YH, Shin SS, Oh MH, Lee JH, Kim SY (2016) Composition containing meso-2,3-butanediol. WO 2016064180 A1

  9. Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

    Article  CAS  PubMed  Google Scholar 

  10. Garg S, Jain A (1995) Fermentative production of 2,3-butnaediol: a review. Bioresour Technol 51:103–109. https://doi.org/10.1016/0960-8524(94)00136-O

    Article  CAS  Google Scholar 

  11. Cortes-Barco AM, Goodwin PH, Hsiang T (2010) Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59:643–653

    Article  CAS  Google Scholar 

  12. Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18. https://doi.org/10.1007/s002530000486

    Article  CAS  PubMed  Google Scholar 

  13. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol–current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140. https://doi.org/10.1080/10408410701364604

    Article  CAS  PubMed  Google Scholar 

  15. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  16. Ui S, Mimura A, Ohkuma M, Kudo T (1999) Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase. Lett Appl Microbiol 28:457–460. https://doi.org/10.1046/j.1365-2672.1999.00560.x

    Article  CAS  PubMed  Google Scholar 

  17. Ge Y, Li K, Li L, Gao C, Zhang L, Ma C, Xu P (2016) Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem 18:4693–4703. https://doi.org/10.1039/C6GC01023G

    Article  CAS  Google Scholar 

  18. Magee R, Kosaric N (1987) The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161. https://doi.org/10.1016/S0065-2164(08)70079-0

    Article  CAS  Google Scholar 

  19. Yang Z, Zhang Z (2018) Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol Biofuels 11:35. https://doi.org/10.1186/s13068-018-1031-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

    Article  CAS  PubMed  Google Scholar 

  21. Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690. https://doi.org/10.1007/s00018-012-0945-1

    Article  CAS  PubMed  Google Scholar 

  22. Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR (2016) Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep. https://doi.org/10.1038/srep36769 (Article number: 36769)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hohn-Bentz H, Radler F (1978) Bacterial 2,3-butanediol dehydrogenases. Arch Microbiol 116:197–203. https://doi.org/10.1007/BF00406037

    Article  CAS  PubMed  Google Scholar 

  24. Kim B, Lee S, Park J, Lu M, Oh M, Kim Y, Lee J (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J Microbiol Biotechnol 22:1258–1263

    Article  CAS  Google Scholar 

  25. Guo X, Cao C, Wang Y, Li C, Wu M, Chen Y, Zhang C, Pei H, Xiao D (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7:44. https://doi.org/10.1186/1754-6834-7-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rathnasingh C, Park JM, Kim DK, Song H, Chang YK (2016) Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnol Lett 38:975–982. https://doi.org/10.1007/s10529-016-2062-y

    Article  CAS  PubMed  Google Scholar 

  27. Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57. https://doi.org/10.1007/s00253-008-1732-7

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, Kim B, Yang J, Jeong D, Park S, Lee J (2015) A non-pathogenic and optically high concentrated (R, R)-2,3-butanediol biosynthesizing Klebsiella strain. J Biotechnol 209:7–13. https://doi.org/10.1016/j.jbiotec.2015.06.385

    Article  CAS  PubMed  Google Scholar 

  29. Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758. https://doi.org/10.1007/s00253-009-2222-2

    Article  CAS  PubMed  Google Scholar 

  30. Kim DK, Rathnasingh C, Song H, Lee HJ, Seung D, Chang YK (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192. https://doi.org/10.1016/j.jbiosc.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  31. Park JM, Song H, Lee HJ, Seung D (2013) In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol 40:1057–1066. https://doi.org/10.1007/s10295-013-1298-y

    Article  CAS  PubMed  Google Scholar 

  32. Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, Jantama SS, Kanchanatawee S (2015) Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng 30:16–26. https://doi.org/10.1016/j.ymben.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  33. Jung MY, Ng CY, Song H, Lee J, Oh MK (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol 95:461–469. https://doi.org/10.1007/s00253-012-3883-9

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C, Xu P (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27. https://doi.org/10.1016/j.ymben.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  35. Rao B, Zhang LY, Sun J, Su G, Wei D, Chu J, Zhu J, Shen Y (2012) Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl Microbiol Biotechnol 93:2147–2159. https://doi.org/10.1007/s00253-011-3608-5

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967. https://doi.org/10.1016/j.biortech.2009.10.052

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Sun J, Hao Y, Zhu J, Chu J, Wei D, Shen Y (2010) Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol 37:857–862. https://doi.org/10.1007/s10295-010-0733-6

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Zhang L, Li K, Wang Y, Gao C, Han B, Ma C, Xu P (2013) A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels 6:123. https://doi.org/10.1186/1754-6834-6-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97:6715–6723. https://doi.org/10.1007/s00253-013-4981-z

    Article  CAS  PubMed  Google Scholar 

  40. Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuels 9:90. https://doi.org/10.1186/s13068-016-0502-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244. https://doi.org/10.1016/j.biortech.2012.08.047

    Article  CAS  PubMed  Google Scholar 

  42. Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51:650–658. https://doi.org/10.1002/jobm.201100033

    Article  CAS  PubMed  Google Scholar 

  43. Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2013) Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 8:e76149. https://doi.org/10.1371/journal.pone.0076149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim SJ, Seo SO, Jin YS, Seo JH (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281. https://doi.org/10.1016/j.biortech.2013.07.081

    Article  CAS  PubMed  Google Scholar 

  45. Gonzalez E, Fernandez MR, Larroy C, Sola L, Pericas MA, Pares X, Biosca JA (2000) Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem 275:35876–35885. https://doi.org/10.1074/jbc.M003035200

    Article  CAS  PubMed  Google Scholar 

  46. Kim S, Hahn JS (2015) Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng 31:94–101. https://doi.org/10.1016/j.ymben.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  47. Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng 23:22–33. https://doi.org/10.1016/j.ymben.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  48. Nozzi NE, Case AE, Carroll AL, Atsumi S (2017) Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00157

    Article  PubMed  Google Scholar 

  49. Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2017) Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 37:990–1005. https://doi.org/10.1080/07388551.2017.1299680

    Article  CAS  PubMed  Google Scholar 

  50. Bialkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:200. https://doi.org/10.1007/s11274-016-2161-x

    Article  CAS  PubMed  Google Scholar 

  51. Gao J, Xu H, Li QJ, Feng XH, Li S (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour Technol 101:7087–7093. https://doi.org/10.1016/j.biortech.2010.03.143

    Article  CAS  PubMed  Google Scholar 

  52. Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665. https://doi.org/10.1007/s00253-009-2004-x

    Article  CAS  PubMed  Google Scholar 

  53. Wang A, Xu Y, Ma C, Gao C, Li L, Wang Y, Tao F, Xu P (2012) Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One 7:e40442. https://doi.org/10.1371/journal.pone.0040442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I (2012) Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 7:293–303. https://doi.org/10.1002/biot.201100122

    Article  CAS  PubMed  Google Scholar 

  55. Jung MY, Park BS, Lee J, Oh MK (2013) Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol 139:21–27. https://doi.org/10.1016/j.biortech.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  56. Xin Fengxue, Basu Anindya, Weng Michelle Cheung, Yang Kun-Lin, He J (2016) Production of 2,3-butanediol from sucrose by a klebsiella species. Bioenergy Res 9:15–22. https://doi.org/10.1007/s12155-015-9653-7

    Article  CAS  Google Scholar 

  57. Song CW, Rathnasingh C, Park JM, Lee J, Song H (2018) Isolation and evaluation of Bacillus strains for industrial production of 2,3-butanediol. J Microbiol Biotechnol 28:409–417. https://doi.org/10.4014/jmb.1710.10038

    Article  CAS  PubMed  Google Scholar 

  58. Pervez S, Aman A, Iqbal S, Siddiqui NN, Ul Qader SA (2014) Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC Biotechnol 14:49. https://doi.org/10.1186/1472-6750-14-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Szambelan K, Nowak J, Czarnecki Z (2004) Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 26:845–848. https://doi.org/10.1023/B:BILE.0000025889.25364.4b

    Article  CAS  PubMed  Google Scholar 

  60. Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852. https://doi.org/10.1007/s00253-008-1823-5

    Article  CAS  PubMed  Google Scholar 

  61. Li L, Chen C, Li K, Wang Y, Gao C, Ma C, Xu P (2014) Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Appl Environ Microbiol 80:6458–6464. https://doi.org/10.1128/AEM.01802-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Champluvier B, Francart B, Rouxhet PG (1989) Co-immobilization by adhesion of beta-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca: conversion of lactose into 2,3-butanediol. Biotechnol Bioeng 34:844–853. https://doi.org/10.1002/bit.260340614

    Article  CAS  PubMed  Google Scholar 

  63. Ahn JH, Sang BI, Um Y (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresour Technol 102:4934–4937. https://doi.org/10.1016/j.biortech.2011.01.046

    Article  CAS  PubMed  Google Scholar 

  64. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39. https://doi.org/10.1016/j.biotechadv.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  65. Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146. https://doi.org/10.1186/s13068-015-0336-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomsen MH, Thygesen A, Thomsen AB (2009) Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol 83:447–455. https://doi.org/10.1007/s00253-009-1867-1

    Article  CAS  PubMed  Google Scholar 

  67. Bialkowska AM, Gromek E, Krysiak J, Sikora B, Kalinowska H, Jedrzejczak-Krzepkowska M, Kubik C, Lang S, Schutt F, Turkiewicz M (2015) Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. J Ind Microbiol Biotechnol 42:1609–1621. https://doi.org/10.1007/s10295-015-1697-3

    Article  CAS  PubMed  Google Scholar 

  68. Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970. https://doi.org/10.1007/s00253-010-2557-8

    Article  CAS  PubMed  Google Scholar 

  69. Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the U.S. Department of Energy’s Research and Development Activities for bioethanol. Biotechnol Prog 15:817–827. https://doi.org/10.1021/bp990110d

    Article  CAS  PubMed  Google Scholar 

  70. Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P (2014) Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol 170:256–261. https://doi.org/10.1016/j.biortech.2014.07.101

    Article  CAS  PubMed  Google Scholar 

  71. Kang IY, Park JM, Hong WK, Kim YS, Jung YR, Kim SB, Heo SY, Lee SM, Kang JY, Oh BR, Kim DH, Seo JW, Kim CH (2015) Enhanced production of 2,3-butanediol by a genetically engineered Bacillus sp. BRC1 using a hydrolysate of empty palm fruit bunches. Bioprocess Biosyst Eng 38:299–305. https://doi.org/10.1007/s00449-014-1268-4

    Article  CAS  PubMed  Google Scholar 

  72. Mazumdar S, Lee J, Oh MK (2013) Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 136:329–336. https://doi.org/10.1016/j.biortech.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  73. Waldron KW (2010) Bioalcohol production: biochemical conversion of lignocellulosic biomass, 1st edn. Woodhead Pulishing Series in Energy, Sawston

    Book  Google Scholar 

  74. Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2,3-butanediol from d-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26:362–369. https://doi.org/10.1002/bit.260260411

    Article  CAS  PubMed  Google Scholar 

  75. Sablayrolles JM, Goma G (1984) Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation. Biotechnol Bioeng 26:148–155. https://doi.org/10.1002/bit.260260207

    Article  CAS  PubMed  Google Scholar 

  76. Kosaric N, Magee RJ, Blaszczyk R (1992) Redox potential measurement for monitoring glucose and xylose conversion by K. pneumoniae. Chem Biochem Eng Q 6:145–152

    CAS  Google Scholar 

  77. Beronio PB Jr, Tsao GT (1993) Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol Bioeng 42:1263–1269. https://doi.org/10.1002/bit.260421102

    Article  CAS  PubMed  Google Scholar 

  78. Fages J, Mulard D, Rouquet J, Wilhelm J (1986) 2,3-Butanediol production from Jerusalem artichoke, Helianfhus fuberosus, and by Bacillus polymyxa ATCC 12321. Optimization of kLa profile. Appl Microbiol Biotechnol 25:197–202

    Article  CAS  Google Scholar 

  79. Zeng AP, Byun TG, Posten C, Deckwer WD (1994) Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioeng 44:1107–1114. https://doi.org/10.1002/bit.260440912

    Article  CAS  PubMed  Google Scholar 

  80. Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S (2009) Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 100:3410–3414. https://doi.org/10.1016/j.biortech.2009.02.031

    Article  CAS  PubMed  Google Scholar 

  81. Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2, 3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:1133–1138. https://doi.org/10.1023/A:1005324403186

    Article  CAS  Google Scholar 

  82. Van Houdt R, Aertsen A, Michiels CW (2007) Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol 158:379–385. https://doi.org/10.1016/j.resmic.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  83. Yu EK, Saddler JN (1982) Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbiol 44:777–784. https://doi.org/10.1155/2011/636170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N (2000) Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng 90:661–664

    Article  CAS  Google Scholar 

  85. Perego P, Converti A, Del Borghi M (2003) Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresour Technol 89:125–131. https://doi.org/10.1016/S0960-8524(03)00063-4

    Article  CAS  PubMed  Google Scholar 

  86. Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87:943–949. https://doi.org/10.1007/s00253-010-2545-z

    Article  CAS  PubMed  Google Scholar 

  87. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354. https://doi.org/10.1007/s00253-008-1458-6

    Article  CAS  PubMed  Google Scholar 

  88. Grover BP, Garg SK, Verma J (1990) Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J Microbiol Biotechnol 6:328–332. https://doi.org/10.1007/BF01201306

    Article  CAS  PubMed  Google Scholar 

  89. Anvari M, Safari Motlagh MR (2011) Enhancement of 2,3-butanediol production by Klebsiella oxytoca PTCC 1402. J Biomed Biotechnol 2011:636170. https://doi.org/10.1155/2011/636170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Long SK, Patrick R (1963) The present status of the 2,3-butylene glycol fermentation. Adv Appl Microbiol 5:135–155. https://doi.org/10.1016/S0065-2164(08)70009-1

    Article  CAS  PubMed  Google Scholar 

  91. Dettwiler B, Dunn IJ, Heinzle E, Prenosil JE (1993) A simulation model for the continuous production of acetoin and butanediol using Bacillus subtilis with integrated pervaporation separation. Biotechnol Bioeng 41:791–800. https://doi.org/10.1002/bit.260410805

    Article  CAS  PubMed  Google Scholar 

  92. Dziewulski DM, Haughney HA, Das KP, Nauman EB (1986) Fed-batch with biomass recycle and batch production of 2,3-butanediol from glucose by Bacillus polymyxa. J Biotechnol 4:171–180. https://doi.org/10.1016/0168-1656(86)90044-1

    Article  CAS  Google Scholar 

  93. Itoh N, Nakamura M, Inoue K, Makino Y (2007) Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Appl Microbiol Biotechnol 75:1249–1256. https://doi.org/10.1007/s00253-007-0957-1

    Article  CAS  PubMed  Google Scholar 

  94. Wheat J, Xleslie J, Tomkins R, Mitton H, Scott D, Ledingham G (1948) Production and properties of 2,3-butanediol. XXVIII. Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa. Can J Res 26:469–496

    Article  Google Scholar 

  95. Shao P, Kumar A (2009) Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme. J Membr Sci 329:160–168. https://doi.org/10.1016/j.memsci.2008.12.033

    Article  CAS  Google Scholar 

  96. Sridhar S (1989) Zur Abtrennung von butandiol-2,3 aus Fermenter-Brühen mit Hilfe der Umkehrosmose. Chem Ing Tech 61:252–253. https://doi.org/10.1002/cite.330610316

    Article  CAS  Google Scholar 

  97. Qureshi N, Meagher MM, Hutkins RW (2006) Recovery of 2,3-butanediol by vacuum membrane distillation. Sep Sci Technol 29:1733–1748. https://doi.org/10.1080/01496399408002168

    Article  Google Scholar 

  98. Sun LH, Jiang B, Xiu ZL (2009) Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system. Biotechnol Lett 31:371–376. https://doi.org/10.1007/s10529-008-9874-3

    Article  CAS  PubMed  Google Scholar 

  99. Jeon S, Kim DK, Song H, Lee HJ, Park S, Seung D, Chang YK (2014) 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation. J Biosci Bioeng 117:464–470. https://doi.org/10.1016/j.jbiosc.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  100. Jeon SJ, Nam HG (2019) Method of preparing diol. Korea Patent 1019751870000

  101. Lee JJ, Jeon SJ, Nam HG (2019) Method of decolorization and deordorization of polyhydric alcohol. Korea Patent 1019695300000

  102. Joanna P, Bogusław C (2006) New compounds for production of polyurethane foams. Appl Polym Sci 102:5918–5926. https://doi.org/10.1002/app.25093

    Article  CAS  Google Scholar 

  103. Jiang B, Zhang Z (2010) Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the loess plateau region of china. Molecules 15:9184–9196. https://doi.org/10.3390/molecules15129184

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. https://doi.org/10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  Google Scholar 

  106. Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Microbe Interact 19:924–930. https://doi.org/10.1094/MPMI-19-0924

    Article  CAS  PubMed  Google Scholar 

  107. Kong HG, Shin TS, Kim TH, Ryu CM (2018) Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci 9:90. https://doi.org/10.3389/fpls.2018.00090

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wu L, Li X, Ma L, Borriss R, Wu Z, Gao X (2018) Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. J Exp Bot 69:5625–5635. https://doi.org/10.1093/jxb/ery326

    Article  CAS  PubMed  Google Scholar 

  109. Lai HC, Chang CJ, Yang CH, Hsu YJ, Chen CC, Lin CS, Tsai YH, Huang TT, Ojcius DM, Tsai YH, Lu CC (2012) Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol. J Leukoc Biol 92:807–814. https://doi.org/10.1189/jlb.0112024

    Article  CAS  PubMed  Google Scholar 

  110. Hsieh SC, Lu CC, Horng YT, Soo PC, Chang YL, Tsai YH, Lin CS, Lai HC (2007) The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats. Microbes Infect 9:1402–1409. https://doi.org/10.1016/j.micinf.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  111. Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang YJ, Zhao X (2014) NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111:2126–2131. https://doi.org/10.1002/bit.25265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (No. 10050407) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyohak Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C.W., Park, J.M., Chung, S.C. et al. Microbial production of 2,3-butanediol for industrial applications. J Ind Microbiol Biotechnol 46, 1583–1601 (2019). https://doi.org/10.1007/s10295-019-02231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02231-0

Keywords

Navigation