Skip to main content
Log in

Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Afschar AS, Bellgardt KH, Vaz Rossell CE, Czok A, Schaller K (1991) The production of 2,3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol 34:582–585. doi:10.1007/BF00167903

    Article  CAS  Google Scholar 

  2. Barham D, Trinder P (1972) An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145. doi:10.1039/AN9729700142

    Article  CAS  PubMed  Google Scholar 

  3. Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94:651–658. doi:10.1007/s00253-011-3774-5

    Article  CAS  PubMed  Google Scholar 

  4. Budsławski J, Drabant Z (1972) Food analysis methods. WNT, Warsaw, p 276

    Google Scholar 

  5. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol: current state and prospects. Biotechnol Adv 27:715–725. doi:10.1016/j.biotechadv.2009.05.002

    Article  PubMed  Google Scholar 

  6. Cheng K-K, Liu Q, Zhang J-A, Li J-P, Xu J-M, Wang G-H (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem 45:613–616. doi:10.1016/j.procbio.2009.12.009

    Article  CAS  Google Scholar 

  7. Dai J-Y, Zhao P, Cheng X-L, Xiu Z-L (2015) Enhanced production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 175:3014–3024. doi:10.1007/s12010-015-1481-x

    Article  CAS  PubMed  Google Scholar 

  8. Gao J, Xu H, Li Q, Feng X, Li S (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour Technol 101:7076–7082. doi:10.1016/j.biortech.2010.03.143

    Article  CAS  Google Scholar 

  9. Ji X-J, Huang H, Ouyang P-K (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364. doi:10.1016/j.biotechadv.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Jung MY, Park BS, Lee J, Oh MK (2013) Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol 139:21–27. doi:10.1016/j.biortech.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  11. Jurchescu I-M, Hamann J, Zhou X, Ortmann T, Kuenz A, Prüße U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97:6715–6723. doi:10.1007/s00253-013-4981-z

    Article  CAS  PubMed  Google Scholar 

  12. Krauze S (1962) Laboratory manual of food analyst. PZWL, Warsaw

    Google Scholar 

  13. Li D, Dai J-Y, Xiu Z-L (2010) A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour Technol 101:8342–8347. doi:10.1016/j.biortech.2010.06.041

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Chen Ch, Li K, Wang Y, Gao Ch, Ma C, Xu P (2014) Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Appl Environ Microbiol 80:6458–6464. doi:10.1128/AEM.01802-14

    Article  PubMed Central  PubMed  Google Scholar 

  15. Li L, Li K, Wang K, Chen Ch, Gao Ch, Ma C, Xu P (2015) Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol 170:256–261. doi:10.1016/j.biortech.2014.07.101

    Article  Google Scholar 

  16. Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57. doi:10.1007/s00253-008-1732-7

    Article  CAS  PubMed  Google Scholar 

  17. Mazumdar S, Lee J, Oh MK (2013) Microbial production of 2,3-butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 136:329–336. doi:10.1016/j.biortech.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  18. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:420–428. doi:10.1021/ac60147a030

    Google Scholar 

  19. Nawirska A, Kwaśniewska M (2005) Dietary fiber fractions from fruit and vegetable processing waste. Food Chem 91:221–225. doi:10.1016/j.foodchem.2003.10.005

    Article  CAS  Google Scholar 

  20. Nilegaonkar SS, Bhosale SB, Dandage CN, Kapadi AH (1996) Potential of Bacillus licheniformis for the production of 2,3-butanediol. J Ferment Bioeng 82:408–410. doi:10.1016/0922-338X(96)89161-6

    Article  CAS  Google Scholar 

  21. Perego P, Converti A, Del Borghi M (2003) Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresour Technol 89:125–131. doi:10.1016/S0960-8524(03)00063-4

    Article  CAS  PubMed  Google Scholar 

  22. Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87:943–949. doi:10.1007/s00253-010-2545-z

    Article  CAS  PubMed  Google Scholar 

  23. Pyć R, Antczak T, Bratkowska H (2011) A method of enzymatic preparation production. Polish Patent no. 209161

  24. Shrivastav A, Lee J, Kim H-Y, Kim Y-R (2013) Recent insights in the removal of Klebsiella pathogenicity factors for the industrial production of 2,3-butanediol. J Microbiol Biotechnol 23:885–896. doi:10.4014/jmb.1302.02066

    Article  CAS  PubMed  Google Scholar 

  25. Slutter A, Hames B, Ruiz R, Scarlata C, Slutter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618

  26. Sun H-L, Wang X-D, Dai J-Y, Xiu Z-L (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852. doi:10.1007/s00253-008-1823-5

    Article  CAS  PubMed  Google Scholar 

  27. Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12. doi:10.1080/07388550801913840

    Article  CAS  PubMed  Google Scholar 

  28. Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P (2010) Production of 2,3-butanediol from corncob molasses a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970. doi:10.1007/s00253-010-2557-8

    Article  CAS  PubMed  Google Scholar 

  29. Wang A, Xu Y, Ma C, Gao C, Li L, Wang Y, Tao F, Xu P (2012) Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS ONE 7:e40442. doi:10.1371/journal.pone.0040442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wang Z, Wang Y, Xie F, Chen S, Li J, Li D, Chen X (2014) Improvement of acetoin reductase activity enhances bacitracin production by Bacillus licheniformis. Proc Biochem 49:2039–2043. doi:10.1016/j.procbio.2014.08.017

    Article  CAS  Google Scholar 

  31. Zhang L, Ja S, Hao Y, Chu J, Wei D, Shen Y (2010) Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol 37:857–862. doi:10.1007/s10295-010-0733-6

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Yang Y, Ja S, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967. doi:10.1016/j.biortech.2009.10.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The presented results were obtained within the scope of the international ERA-IB project (2009–2011) with the acronym PUBB. Financial support was provided by the Polish National Center for Research and Development (NCBiR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Kalinowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Białkowska, A.M., Gromek, E., Krysiak, J. et al. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. J Ind Microbiol Biotechnol 42, 1609–1621 (2015). https://doi.org/10.1007/s10295-015-1697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1697-3

Keywords

Navigation