Skip to main content
Log in

Development of disease-resistant marker-free tomato by R/RS site-specific recombination

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The selection marker genes, imparting antibiotic or herbicide resistance, in the final transgenics have been criticized by the public and considered a hindrance in their commercialization. Multi-auto-transformation (MAT) vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators (PGRs). In the study reported here, isopentenyltransferase (ipt) gene was used as a selection marker and wasabi defensin (WD) gene, isolated from Wasabia japonica as a target gene. WD was cloned from the binary vector, pEKH-WD to an ipt-type MAT vector, pMAT21 by gateway cloning and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledons of tomato cv. Reiyo were cultured on PGR- and antibiotic-free MS medium. Adventitious shoots were developed by the explants infected with the pMAT21/wasabi defensin. The same PGR- and antibiotic-free MS medium was used in subcultures of the adventitious shoot lines (ASLs) to produce ipt and normal shoots. Approximately, 6 months after infection morphologically normal shoots were produced. Molecular analyses of the developed shoots confirmed the integration of gene of interest (WD) and excision of the selection marker (ipt). Expression of WD was confirmed by Northern blot and Western blot analyses. The marker-free transgenic plants exhibited enhanced resistance against Botrytis cinerea (gray mold), Alternaria solani (early blight), Fusarium oxysporum (Fusarium wilt) and Erysiphe lycopersici (powdery mildew).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akama K, Puchta H, Hohn B (1995) Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker. Plant Cell Rep 14:450–454

    Article  CAS  Google Scholar 

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

    Google Scholar 

  • Araki H, Jearnpipatkula A, Tatsumi H, Sakurai T, Ushino K, Muta T, Oshima Y (1987) Molecular and functional organization of yeast plasmid pSR1. J Mol Biol 182:191–203

    Article  Google Scholar 

  • Ballester R, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Peña L (2010) Selectable marker-free transgenic orange plants recovered under non-selective conditions and through PCR analysis of all regenerants. Plant Cell Tissue Organ Cult 102:329–336

    Article  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Broekaert WF, Terrras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, de Samblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323

    CAS  Google Scholar 

  • Cammue BPA, De Balee MF, Terras FRG, Proost P, Van Damme J, Rees SB et al (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

    PubMed  CAS  Google Scholar 

  • Cammue BPA, De Bolle MFC, Schoofs HME, Terras FRG, Thevissen K, Osborn RW, Rees SB, Broekaert WF (1994) Gene encoded antimicrobial peptides from plants. In: Boman HG, Marsh J, Goode JA (eds) Antimicrobial Peptides, Ciba Foundation Symposium 186. Wiley, New York, pp 91–106

    Google Scholar 

  • Chen C (1997) Cytokinin biosynthesis and interconversion. Physiol Plant 101:665–673

    Article  CAS  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245

    PubMed  CAS  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2000) Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Plant Sci 159:273–280

    Article  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2001) Efficient shoot regeneration from hairy roots of Antirrhinum majus L. transformed by the rol-type MAT vector system. Plant Cell Rep 20:55–59

    Article  CAS  Google Scholar 

  • Dale PJ (1992) Spread of engineered genes to wild relatives. Plant Physiol 100:13–15

    Article  PubMed  CAS  Google Scholar 

  • Darbani B, Elimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Komamine A (2001) MAT (Multi-Auto-Transformation) Vector System. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103–113

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997a) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 99:2117–2121

    Article  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997b) Principle of MAT vector system. Plant Biotech 14:133–139

    CAS  Google Scholar 

  • Endo S, Kasahara T, Sugita K, Ebinuma H (2002) A new GSTMAT vector containing both ipt and iaaM/H genes can produce marker-free transgenic tobacco plants with higher frequency. Plant Cell Rep 20:923–928

    Article  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of CRE recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, Mc Coy RL, Silvanovich A (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 99:7–23

    Article  PubMed  CAS  Google Scholar 

  • Gressel J (1992) Indiscriminate use of selectable markers: sowing wild oats? TIBTECH 10:382

    Google Scholar 

  • Hare P, Chua N-H (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    Article  PubMed  CAS  Google Scholar 

  • Hewelt A, Prinsen E, Schell J, Van Onckelen H, Schmuülling T (1994) Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J 6:879–891

    Article  PubMed  CAS  Google Scholar 

  • Hill R, Sendashonga C (2006) Conservation biology, genetically modified organisms, and the biosafety protocol. Conserv Biol 20:1620–1625

    Article  PubMed  Google Scholar 

  • Hohn B, Levy A, Putcha H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12:139–143

    Article  PubMed  CAS  Google Scholar 

  • Jaiwal PK, Sahoo L, Singh ND, Singh RP (2002) Strategies to deal with the concern about marker genes in transgenic plants: some environment friendly approaches. Curr Sci 83:128–136

    CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  PubMed  CAS  Google Scholar 

  • Khan RS, Chin DP, Nakamura I, Mii M (2006a) Production of marker-free Nierembergia caerulea using MAT vector system. Plant Cell Rep 25:914–919

    Article  PubMed  CAS  Google Scholar 

  • Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006b) Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183

    Article  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2010a) Production and selection of marker-free transgenic plants of Petunia hybrida using site-specific recombination. Biol Plant 54:265–271

    Article  CAS  Google Scholar 

  • Khan RS, Thirukkumaran G, Nakamura I, Mii M (2010b) Rol (root loci) gene as a positive selection marker to produce marker-free Petunia hybrida. Plant Cell Tissue Organ Cult 101:279–285

    Article  CAS  Google Scholar 

  • Kiba A, Saitoh H, Nishihara M, Omiya K, Yamamura S (2003) C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol 44:296–303

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81:1829–1835

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009) Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tissue Organ Cult 99:97–108

    Article  CAS  Google Scholar 

  • Lukyanenko AN (1991) Disease resistance in tomato,” in genetic improvement of tomato. Kalloo G (ed) Monographs on theoretical and applied genetics, vol. 14. Springer, Berlin, Germany, pp. 99–119

  • Luo YY, Gianfagna TJ, Janes HW, Huang B, Wang Z, Xing J (2005) Expression of the ipt gene with the AGPase S1 promoter in tomato results in unbranched roots and delayed leaf senescence. Plant Growth Regul 47:47–57

    Article  CAS  Google Scholar 

  • Martineau B, Houck CM, Sheehy RE, Hiatt WR (1993) Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. Plant J 5:11–19

    Article  Google Scholar 

  • Martineau B, Summerfelt KR, Adams DF, DeVerna JW (1995) Production of high solids tomatoes through molecular modification of levels of the plant growth regulator cytokinin. Nat Biotechnol 13:250–254

    Article  CAS  Google Scholar 

  • Matsunaga E, Sugita K, Ebinuma H (2002) Asexual production of selectable-marker free transgenic woody plants, vegetatively propagated species. Mol Breed 10:95–106

    Article  CAS  Google Scholar 

  • McGaw BA, Burch LR (1995) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 98–117

    Google Scholar 

  • Medford JI, Horgan R, EI-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    Article  PubMed  CAS  Google Scholar 

  • Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In: Davies PJ (ed) Plant hormones physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 318–339

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nap JP, Bijvoet J, Stikema WJ (1992) Biosafety of kanamycin resistant plants: an overview. Transgen Res 1:239–249

    Article  CAS  Google Scholar 

  • Ng TB (2004) Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides 25:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 169:85–87

    Article  Google Scholar 

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in ‘‘Egusi’’ melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954

    Article  PubMed  CAS  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274

    Article  PubMed  CAS  Google Scholar 

  • Rickk CM, Yoder JI (1988) Classical and molecular genetics of tomato: highlights and perspectives. Annu Rev Genet 22:281–300

    Article  Google Scholar 

  • Rogers OS, Bendich JA (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schiliperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, Boston, London, A6:1–10

  • Roy SD, Saxena M, Bhomkar PS, Pooggin M, Hohn T, Sarin NB (2008) Generation of Marker-free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and CRE gene under inducible promoters. Plant Cell Tissue Organ Cult 95:1–11

    Article  CAS  Google Scholar 

  • Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J (2009) Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Rep 28:445–455

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Kiba A, Nishihara M, Yamamura S, Suzuki K, Terauchi R (2001) Production of antimicrobial defensin in Nicotiana benthamiana with a potato virus × vector. Mol Plant Microbe Interact 14:111–115

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scaramelli L, Balestrazzi A, Bonadei M, Piano E, Carbonera D, Confalonieri M (2009) Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Plant Cell Rep 28:197–211

    Article  PubMed  CAS  Google Scholar 

  • Schmülling T, Beinsberger S, De Greef J, Schell J, Van Onckelen H, Spena A (1989) Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249:401–406

    Article  Google Scholar 

  • Sjahril R, Chin DP, Khan RS, Yamamura S, Nakamura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia caratovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotechnol 23:191–194

    Article  CAS  Google Scholar 

  • Smigocki AC (1991) Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol 16:105–115

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947

    Article  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Kasahara T, Ebinuma H (2000) Transgene stacking in plants in the absence of sexual crossing. Mol Breed 6:529–536

    Article  CAS  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    PubMed  CAS  Google Scholar 

  • Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316:233–240

    Article  PubMed  CAS  Google Scholar 

  • Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2009) Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe Blossfeldiana. Plant Cell Tissue Organ Cult 97:237–242

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • Vetten N, Wolters AM, Raemkers K, Meer I, Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:4339–4442

    Google Scholar 

  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1984) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5:103–108

    Article  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb Protoc. doi:10.1101/pdb.prot4666

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Biotechnology 12:263–267

    Article  CAS  Google Scholar 

  • Zelasco S, Ressegotti V, Confalonieri M, Carbonera D, Calligari P, Bonadei M, Bisoffi S, Yamada K, Balestrazzi A (2007) Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by ‘single-step transformation’. Pl Cell Tissue Organ Cult 91:61–72

    Article  CAS  Google Scholar 

  • Zhang Y, Liu H, Li B, Zhang JT, Li Y, Zhang H (2009) Generation of selectable marker- free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Res 18:607–619

    Article  PubMed  CAS  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Japan Society for Promotions of Sciences (JSPS) for their financial support for this research project. We are also thankful to Pulp and Paper Research group, Nippon Paper Industries, Tokyo, who kindly provided the MAT vector constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Additional information

Communicated by H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, R.S., Nakamura, I. & Mii, M. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30, 1041–1053 (2011). https://doi.org/10.1007/s00299-011-1011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1011-4

Keywords

Navigation