Skip to main content
Log in

Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

We report an Agrobacterium-mediated transformation system that can generate marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] from a public line [P898012] using standard binary vectors with bar as a selectable marker. Eight co-cultivation conditions were examined for their effect on transformation. The average transformation frequencies were 0.4 and 0.7% for pZY101-TC2 and pZY101-SKRS, respectively, derived from binary vector pZY102 and containing bar and target gene(s) in separate T-DNA regions. A low selection pressure (2.5 mg l−1 DL-phosphinothrithin, PPT) was deployed during callus induction in combination with rapid selection to generate plants from 80 independent events, all but three of which were fertile and set seed. PCR and Southern analyses showed that 36 out of 80 events contained both bar and the target gene(s) (an average co-transformation frequency of 45%). Seedlings of the T1 generation transmitted T-DNAs with target gene(s) and bar gene independently, generating a fraction of progeny with only the target gene(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Able JA (1998) Transformation of sorghum using the particle inflow gun (PIG). Int Sorghum Millets Newsl 39:98–100

    Google Scholar 

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol-Plant 37:341–348

    Article  CAS  Google Scholar 

  • Cai T, Pierce DA, Tagliani LA, Zhao ZY (2002) Agrobacterium mediated transformation of sorghum. US Patent 6369298

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson JM, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216

    Article  PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Hann TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic plants obtained after microprojectile bombardment of immature inflorescence. In Vitro Cell Dev Biol-Plant 33:92–100

    Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–22

    Article  CAS  Google Scholar 

  • Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  • Folk WR (2003) How to improve plant protein quality: err on the side of goodness. ISB News Rep (http://www.isb.vt.edu)

  • Frisch DA, Harris-Haller LW, Yokubaitis NT, Thomas TL, Hardin SH, Hall TC (1995) Complete sequence of the binary vector Bin 19. Plant Mol Biol 27:405–409

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, Jararaj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48:321–333

    PubMed  CAS  Google Scholar 

  • Gao ZS, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  PubMed  CAS  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  PubMed  CAS  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente TE (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas 137:20–28

    Article  PubMed  CAS  Google Scholar 

  • Lee BK, Kennon AR, Chen X, Jung TW, Ahn BO, Lee JY, Zhang Z (2007) Recovery of transgenic events from two highly recalcitrant maize (Zea mays L.) genotypes using Agrobacterium-mediated standard-binary-vector transformation. Maydica 52:457–469

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nguyen TV, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum using an improved in vitro regeneration system. Plant Cell Tiss Organ Cult 91:155–164

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimization of transformation condition and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult 75:1–18

    Article  CAS  Google Scholar 

  • Vega J, Yu W, Kennon A, Chen X, Zhang Z (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays L.) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  PubMed  CAS  Google Scholar 

  • Wu XR, Kenzior A, Wilmot D, Scanlon S, Chen Z, Topin A, He S, Acevedo A, Folk WR (2007) Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine. Plant J 50:627–636

    Article  PubMed  CAS  Google Scholar 

  • Zeng P, Vadnais D, Zhang Z, Polacco J (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merr.]. Plant Cell Rep 22:478–482

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y, Jung R (2003) Nutritionally improved transgenic sorghum. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Proceedings of the 10th IAPTC & B Congress. Kluwer Academic Publishers, pp 413–416

  • Zhu H, Muthukrishana S, Krishnaveni S, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank: Scanlon S and other colleagues from Dr. Folk’s lab for their assistance; Z. Zhao, N. Wang, S. Zheng and H. Cline (Pioneer Hi-Bred Intl. Inc.) for helpful suggestions and for P898012 and Drs. G. Liang and Z. S. Gao (Kansas State University) for helpful comments; Aventis CropScience (Research Triangle Park, NC) for providing glufosinate-ammonium and Liberty® as generous gifts; Dr. Seth D. Findley (University of Missouri, Columbia, MO) for critical review of the manuscript. All sorghum transformation experiments were conducted in the Plant Transformation Core Facility at the University of Missouri. Financial support was provided by the University of Missouri Agricultural Experiment Station, the Provost’s office and the University of Missouri Food for the twenty-first Century Eminence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyuan J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Wu, X., Yin, X. et al. Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Organ Cult 99, 97–108 (2009). https://doi.org/10.1007/s11240-009-9580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9580-4

Keywords

Navigation