Skip to main content
Log in

Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Despite the advances in transgenesis, transformation technologies still rely on the introduction of a selectable marker gene to identify cells and tissues that have integrated the gene of interest in their genome. The continuous presence of the marker genes in the transgenics is often controversial as it can potentially have multiple undesirable impacts. The present study employed the self-excising Cre-loxP system to generate marker-free Arabidopsis thaliana expressing the agronomically important glyoxalase I (glyI) gene from Brassica juncea to confer salt stress tolerance. A binary vector was constructed wherein the salt-inducible rd29A promoter was used to drive the expression of the glyI gene and the transformants of A. thaliana were recovered using kanamycin resistance as the selectable marker. The neomycin phosphotransferase II (nptII) gene was flanked by the loxP sites followed by the introduction of a heat-inducible Cre-recombinase in between the loxP sites. The kanamycin-resistant transgenic lines of A. thaliana using this vector showed an ability to withstand stress imposed by 150 mM NaCl. The exposure of the T2 transgenic lines to a mild heat shock (37°C) resulted in the recovery of salt-tolerant, kanamycin-sensitive T3 progeny. Molecular analyses of the T3 transgenic lines following the heat shock treatment confirmed the excision of the nptII gene and the completion of their life cycle in the presence of 150 mM NaCl-induced stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

ABA- responsive element

Cre:

Cre-recombinase

DRE:

Drought responsive element

gly I:

Glyoxalase I

hsp:

Heat shock promoter

MS:

Murashige and Skoog

SPB:

Sodium Phosphate Buffer

GSH:

Reduced glutathione

PMSF:

Phenylmethylsulfonylfluoride

PVPP:

Polyvinyl polypyrrolidone

References

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464. doi:10.1111/j.1399-3054.1989.tb05667.x

    Article  CAS  Google Scholar 

  • Arumugam N, Gupta V, Jagannath A, Mukhopadhyay, Pradhan AK, Burma PK and Pental D (2006) A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre-loxP system. Trans Res 16:703–712. doi:10.1007/s11248-006-9058-7

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Blumwald E, Grover A, Good AG (2004) Breeding for abiotic stress tolerance: challenges and opportunities. Proc. 4th Int. Crop Science Congress

  • Chen S, Li X, Liu X, Xu H, Meng K, Xiao G et al (2005) Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with double T-DNA binary vector system. Plant Cell Rep 23:625–631. doi:10.1007/s00299-004-0853-4

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2

    Article  PubMed  CAS  Google Scholar 

  • Coppoolse ER, de Vroomen MJ, Roelofs D, Smit J, van Gennip F, Hersmus BJ et al (2003) Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol 51:263–279. doi:10.1023/A:1021174726070

    Article  PubMed  CAS  Google Scholar 

  • Cuellar W, Gaudin A, Solorzano D, Casas A, Nopo L, Chudalayandi P et al (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system for transgenic potato. Plant Mol Biol 62:71–82. doi:10.1007/s11103-006-9004-3

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562. doi:10.1073/pnas.88.23.10558

    Article  PubMed  CAS  Google Scholar 

  • Esparteo J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase I from a higher plant; upregulated by stress. Plant Mol Biol 29:1223–1233. doi:10.1007/BF00020464

    Article  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Bio/technology 11:1286–1292

    CAS  Google Scholar 

  • Hill R, Sendashonga C (2006) Conservation biology, genetically modified organism, and the biosafety protocol. Conserv Biol 20(6):1620–1625. doi:10.1111/j.1523-1739.2006.00534.x

    Article  PubMed  Google Scholar 

  • Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre-lox site specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525. doi:10.1007/s001220100748

    Article  PubMed  CAS  Google Scholar 

  • Hoff T, Schnorr KM, Mundy J (2001) A recombinase–mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45:41–49. doi:10.1023/A:1006402308365

    Article  PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Xing A, Moon BP, Burgoyne SA, Guida AD, Liang H et al (2007) A Cre/loxP- mediated self-activating gene excision system to produce marker gene free transgenic soyabean plants. Plant Mol Biol 65:329–341. doi:10.1007/s11103-007-9223-2

    Article  PubMed  CAS  Google Scholar 

  • Marjanac G, De Paepe A, Peck I, Jacobs A, De Buck S, Depicker A (2008) Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 17:239–250

    Article  PubMed  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F et al (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNA’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202. doi:10.1023/A:1011333321893

    Article  CAS  Google Scholar 

  • Murray GC, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucl Acid Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Park J, Lee YK, Kang BK, Chung WH (2004) Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants. Theor Appl Genet 109:1562–1567. doi:10.1007/s00122-004-1790-x

    Article  PubMed  CAS  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132. doi:10.1038/nbt0203-131b

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy O, Guha-Mukherjee S, Sopory SK (1983) Presence of glyoxalase I in pea. Biochem Int 7:307–318

    CAS  Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) In Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Singla-Pareek SL, Reddy M, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100(25):14672–14677. doi:10.1073/pnas.2034667100

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc spiked soils. Plant Physiol 140:613–623. doi:10.1104/pp.105.073734

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Trans. Res. 17:171–180. doi:10.1007/s11248-007-9082-2

    Article  CAS  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94. doi:10.1007/s00299-004-0909-5

    Article  PubMed  CAS  Google Scholar 

  • Stemberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and regulation by DNA methylation. J Mol Biol 187:197–212. doi:10.1016/0022-2836(86)90228-7

    Article  Google Scholar 

  • Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination between lox P sites. J Mol Biol 150:467–486. doi:10.1016/0022-2836(81)90375-2

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (1990) Glyoxalase system: new developments towards functional characterization of metabolic pathways fundamental to biological life. Biochem J Kasu 269:1–11

    CAS  Google Scholar 

  • Uotila L (1989) Glutathione thiol esterases. In: Dolphin D, Poulson R, Avramovic O (eds) Glutahione: Chemical, Biochemical and Medical Aspects, Coenzymes and Cofactors; Vol III. Part A. Wiley-Interscience, New York, pp 767–804

    Google Scholar 

  • Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its overexpression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system. Transgenic Res 14:605–614

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993a) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340. doi:10.1007/BF00277130

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993b) Arabidopsis DNA encoding two dessication–responsive rd29 genes. Plant Physiol 101:1119–1120. doi:10.1104/pp.101.3.1119

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high salt stress. Plant Cell 6:251–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V et al (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168. doi:10.1007/s00122-003-1368-z

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161. doi:10.1038/84428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. S. K. Sopory I.C.G.E.B., New Delhi, for the gift of the glyI cDNA, Prof. John Mundy, University of Copenhagen, Denmark, for the pCrox vector, Prof. Barbara Hohn, F.M.I., Switzerland for discussions and suggestions and Dr. Mohd. Aslam Yusuf and Mr. Ravi Rajwanshi, Jawaharlal Nehru University, New Delhi for their valuable inputs. Thanks are due to Prof. Anna Depicker for her help with advice and vectors. This research project has been implemented with financial contributions from the Swiss Agency for Development and Cooperation, Government of Switzerland and the Department Biotechnology, Government of India under the Indo-Swiss Collaboration of Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Bhalla-Sarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S.D., Saxena, M., Bhomkar, P.S. et al. Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell Tiss Organ Cult 95, 1–11 (2008). https://doi.org/10.1007/s11240-008-9402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9402-0

Keywords

Navigation