Skip to main content
Log in

Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The aim of this research was to generate selectable marker-free transgenic tomato plants with improved tolerance to abiotic stress. An estradiol-induced site-specific DNA excision of a selectable marker gene using the Cre/loxP DNA recombination system was employed to develop transgenic tomato constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase gene from Arabidopsis thaliana. Transgenic tomato plants containing a selectable marker were also produced as controls. The expression of AtIpk2β conferred improved resistance to drought, cold and oxidative stress in both sets of transgenic tomato plants. These results demonstrate the feasibility of using this Cre/loxP-based marker elimination strategy to generate marker-free transgenic crops with improved stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150. doi:10.1016/S0958-1669(02)00298-7

    Article  PubMed  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121(2):231–238. doi:10.1111/j.0031-9317.2004.00308.x

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximately to the left T-DNA border. Plant Mol Biol 20:1195–1197. doi:10.1007/BF00028908

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ellis J, Pelletier G (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signaling. J Physiol 499:291–306

    PubMed  CAS  Google Scholar 

  • Breitler JC, Meynard D, Boxtel JV, Royer M, Cambillau L, Guiderdoni E (2004) A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287. doi:10.1023/B:TRAG.0000034626.22918.0a

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Vanweyenberg V, Erneux C (1995) Molecular study and regulation of d-myo-inositol 1, 4, 5-trisphosphate 3-kinase. Cell Signal 7:643–650. doi:10.1016/0898-6568(95)00035-N

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Ebinuma H, Komamine A (2001) MAT (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103–113. doi:10.1007/s11627-001-0021-2

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94(6):2117–2121. doi:10.1073/pnas.94.6.2117

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Kasahara T (2000) Selection of marker-free transgenic plants using the oncogenes (IPT, ROLA, B, C) of Agrobacterium as selectable markers. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants II. Kluwer, Dordrecht, pp 25–46

    Google Scholar 

  • Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the type MAT vector system. Plant J 30:115–122. doi:10.1046/j.1365-313X.2002.01272.x

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235. doi:10.1023/A:1006184221051

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S (2006) The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidase 1 and 2 to extend shelf-life. Mol Breed 17:7–20. doi:10.1007/s11032-005-0237-7

    Article  CAS  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Snyder MW, Zhang Q, Luethy MH (2004) Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13:451–461. doi:10.1007/s11248-004-1453-3

    Article  PubMed  CAS  Google Scholar 

  • Ishige F, Takaichi M, Foster R, Chua NH, Oeda K (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J 18:443–448. doi:10.1046/j.1365-313X.1999.00456.x

    Article  CAS  Google Scholar 

  • Khan RS, Chin DP, Nakamura I, Mii M (2006) Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Plant Cell Rep 25:914–919. doi:10.1007/s00299-006-0125-6

    Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174. doi:10.1046/j.1365-313X.1996.10010165.x

    Article  PubMed  CAS  Google Scholar 

  • Li B, Wei AY, Song CX, Li N, Zhang JR (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159. doi:10.1111/j.1467-7652.2007.00301.x

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang QQ, Yu MM, Zhang YY, Wu YB, Zhang HX (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulate more soluble sugar but less salt in storage roots. Plant Cell Environ 31:1325–1334. doi:10.1111/j.1365-3040.2008.01838.x

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Davis RW (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol Gen Genet 242(6):653–657. doi:10.1007/BF00283419

    Article  PubMed  CAS  Google Scholar 

  • Lv SL, Yang AF, Zhang JR (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248. doi:10.1007/s11032-007-9086-x

    Article  CAS  Google Scholar 

  • McKersie BD, Chen Y, Beus M, Bowley SR, Bowler C, Inze D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic Alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163. doi:10.1104/pp.103.4.1155

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Park SH, Li JS, Pittman JK, Berkowitz GA, Yang HB, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102(52):18830–18835. doi:10.1073/pnas.0509512102

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Bayley C, Stockton T, Ow DW (1994) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci USA 91(5):1706–1710. doi:10.1073/pnas.91.5.1706

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327. doi:10.1046/j.1365-313x.2000.00787.x

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1–3, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sawahel WA (1994) Transgenic plants: performance, release and containment. World J Microbiol Biotechnol 10:139–144. doi:10.1007/BF00360874

    Article  Google Scholar 

  • Sreekala C, Wu J, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94. doi:10.1007/s00299-004-0909-5

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Odom AR, York JD (2002) Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 277:42711–42718. doi:10.1074/jbc.M209112200

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating maker-free transgenic plants independent of sexual crossing. Plant Cell Rep 8:94l–947

    Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgenic at hi-frequency. Plant J 22:461–469. doi:10.1046/j.1365-313X.2000.00745.x

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14:605–614. doi:10.1007/s11248-005-0884-9

    Article  PubMed  CAS  Google Scholar 

  • Xia HJ, Brearley C, Elge S, Kaplan B, Fromm H, Mueller-Roeber B (2003) Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional ArgR-Mcm1 transcription complex. Plant Cell 15:449–463. doi:10.1105/tpc.006676

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Brearley CA, Lin WH, Wang Y, Ye R, Mueller-Roeber B, Xu ZH, Xue HW (2005) A role of Arabidopsis inositol polyphosphate kinase AtIpk2α, in pollen germination and root growth. Plant Physiol 137:94–103. doi:10.1104/pp.104.045427

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Tang RJ, Zhu JQ, Liu H, Mueller-Roeber B, Xia HJ, Zhang HX (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66:329–343. doi:10.1007/s11103-007-9267-3

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33. doi:10.1046/j.1365-313X.2003.01930.x

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. doi:10.1038/90824

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker-free transgenic plant. J Agric Biotechnol 12:589–596

    Google Scholar 

  • Zhang YY, Li HX, Ouyang B, Lu YG, Ye ZB (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253. doi:10.1007/s10529-006-9081-z

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Guang Y, Arana F, Chen Z, Li Y, Xia HJ (2007) Arabidopsis inositol polyphosphate 6-/3-Kinase (AtIpk2b) is involved in axillary shoot branching via auxin signaling. Plant Physiol 144:942–951. doi:10.1104/pp.106.092163

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediated highly inducible gene expression in transgenic plants. Plant J 24(2):265–273. doi:10.1046/j.1365-313x.2000.00868.x

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Simon GM, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161. doi:10.1038/84428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Nam Hai Chua (Laboratory of Plant Molecular Biology, Rockefeller University, NY) and Professor Hong Wei Xue (Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China) for providing us the pX6-GFP vector and p2300 vector, respectively. This work was supported by the following grants: National Basic Research Program of China (Grant No. 2006CB100106); National Natural Science Foundation of China (NSFC 30571196; 0933ZF11C1; 0933Z411C1). The Ministry of Science and Technology of China (Grant No.: 2007AA10Z187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, H., Li, B. et al. Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Res 18, 607–619 (2009). https://doi.org/10.1007/s11248-009-9251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9251-6

Keywords

Navigation