Skip to main content
Log in

Mat (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

We have developed a new transformation method called MATVS (Multi-Auto-Transformation Vector System). The oncogenes (ipt or rol genes) of Agrobacterium are used as selectable markers to regenerate transgenic cells and to select marker-free transgenic plants in the MATVS. The chimeric ipt gene or the rol genes are combined withthe site-specific recombination R/RS system to remove the oncogenes from the transgenic cells after transformation. We report here the application of MATVS to transformation of tobacco, aspen, rice and snapdragon. (I) The GST-MAT vector pMAT8 has the native ipt gene and the R gene with a chemical inducible promoter (GST-II-27). Use of the GST-MAT vector generated marker-free transgenic tobacco plants cotaining a single copy transgene at high frequency. (2) Use of the GST-MAT vector pRBI11 containing the rbcS 3B-ipt gene produced transgenic marker-free hybrid aspen plants without crossing. (3) Use of the ipt-type MAT vector, pNPI30GFP, containing the 35S-ipt and 35S-R, genes, resulted in the regeneration of marker-free transgenic reice plants directly from infected scutellum tisues at high frequency within 1 mo. (4) Use of the rol-type MAT vector pNPI702, containing the rol genes and the 35S-R gene, produced transgenic marker-free plants of tobacco and snapdragon at high frequency without crossing. Our results show that the promoter of the ipt gene, the preculture periods of plant tissues and the culture medium are important factors to improve the generation efficiency of marker-free transgenic plants. We can rapidly produce marker-free transgenic plants without the production of ipt-shooty intermediates. Therefore, it is a most promising method to save time and work for the generation of marker-free transgenic plants in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyoshi, D. E.; Klee, H.; Amasino, R. M.; Nester, E. W.; Gordon, M. P. T DNA of Agrobacterium tumerfaciens encode an enzyme of eytokinin biosynthesis. Proc. Natl Acad. Sci. USA 81:5994–5998; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Araki, H.; Jearnpipatkul, A.; Tatsumi, H.; Sakurai, T.; Ushino, K.; Muta, T.; Oshima, Y. Molecular and functional organization of yeast plasmid pSRI. J. Mol. Biol. 182:191–203; 1987.

    Article  Google Scholar 

  • Barry, G. F.; Rogers, S. G.; Fraley, R. T.; Brand, L. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl Acad. Sci. USA 81:4776–4780; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Boulter, M. E.; Croy, E.; Simpson, P.; Shields, R.; Croy, R. R. D.; Shirsat, A. H. Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes—a comparison. Plant Sci. 70:91–99; 1990.

    Article  CAS  Google Scholar 

  • Christey, M. C. Transgenic crop plants using Agrobacterium rhizogenes-mediated transfromation. In: Doran, P. M., ed. Hairy roots: culture and application. Amsterdam: Hardwood Academic Publishers; 1997:99–111.

    Google Scholar 

  • Christou, P. Transformation technology. Trends Plant Sci. 1:423–431; 1996.

    Article  Google Scholar 

  • Cui, M.; Takayanagi, K.; Kamada, H.; Nishimura, S.; Handa, T. Transformation of Antirrhinum majus L. by a rol-type multi-autotransformation (MAT) vector system. Plant Sci. 159:273–280; 2000.

    Article  Google Scholar 

  • Cui, M.; Takayanagi, K.; Kamada, H.; Nishimura, S.; Handa, T. Efficient shoot regenration from hairy roots of Antirrhinum majus L. transformed by rol type MAT vector system. Plant. Cell Rep. In press.

  • Dale, E. C.; Ow, D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl Acad. Sci. USA. 88:10558–10562; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma, H.; Mastsunaga, E.; Yamada, K.; Yamakado, M. Transformation of hybrid aspen for resistance to crown gall disease. In: Klopfenstein, N. B.; Chun, Y. W.; Kim, M.-S.; Ahuja, M. R., eds. Micropropagation, genetic engineering, and molecular biology of populus. Gen. Tech. Rep. RM-GTR-297. Fort Collins, USA: Rocky Mountain Forest and Range Experimental Station; 1997a:161–164.

    Google Scholar 

  • Ebinuma, H.; Sugita, K.; Matsunaga, E.; Yamakado, M. Selection of markerfree transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc. Natl. Acad. Sci. USA 94:2117–2121; 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma, H.; Sugita, K.; Matsunaga, E.; Endo, S.; Kasahara, T. Selection of marker-free transgenic plants using the oncogenes (ipt, rol, A, B, C) of Agrobacterium as selectable markers. In: Jain, S. M.; Minocha, S. C.; eds. Molecular biology of woody plants II. Dordreclit, The Netherlands: Kluwer Academic Publishers; 2000:25–46.

    Google Scholar 

  • Ebinuma, H.; Sugita, K.; Matsumaga, E.; Yamakado, M.; Komamine, A. Principle of MAT vector. Plant Biotech. 14:133–139; 1997c.

    CAS  Google Scholar 

  • Endo, S.; Kasahara, T.; Sugita, K.; Matsunaga, E.; Ebinuma, H. The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation. Plant Cell Rep. In press; 1999.

  • Gaudin, V.; Vrain, T.; Jouanin, L. Bacterial genes modifying hormonal balances in plants. Plant Physiol. Biochem. 32:11–29; 1994.

    CAS  Google Scholar 

  • Gleave, A. P.; Mitra, D. S.; Morris, B. A. M. Selectable marker-free transgenic plants without sexual crossing: transient expression of Cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40:223–235; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Haldrup, A.; Petersen, S. G.; Okkels, F. T. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18:76–81; 1998.

    Article  CAS  Google Scholar 

  • Hansen, G.; Wright, M. S. Recent advances in the transformation of plants. Trends Plant Sci. 4:226–231; 1999.

    Article  PubMed  Google Scholar 

  • Hatamoto, H.; Boulter, M. E.; Shirsat, A. H.; Croy, E. J.; Ellis, J. R. Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep. 9:88–92; 1990.

    Article  CAS  Google Scholar 

  • Hiei, Y.; Komari, T.; Kubo, T. Transformation of rice mediated by Agrobacterium tumerfaciens. Plant Mol. Biol. 35:205–218; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Holt, D. C.; Lay, V. J.; Clarke, E. D.; Dinsmore, A.; Jepson, I.; Bright, S. W. J.; Greenland, A. J. Characterization of the safener-induced glutathione S-transferase isoform II from maize. Planta 196:295–302; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas, P. J. J.; Schilperoort, R. A. Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19:15–38; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Joersbo, M.; Donaldson, I.; Kreiberg, J.; Petersen, S. G.; Brunstedt, J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111–117; 1998.

    Article  CAS  Google Scholar 

  • Kiyokawa, S.; Kobayashi, K.; Kikuchi, Y.; Kamada, H.; Harada, H. Root-inducing region of mikimopine type Ri plasmid pRi724. Plant Physiol. 104:801–802; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Komari, T.; Hiei, Y.; Saito, Y.; Murai, N.; Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165–174; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T.; Niu, Q.-W.; Chan, Y.-S.; Chua, N.-H. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat. Biotechnol. 17:916–919; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Morten, J.; Okkels, F. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep. 16:219–221; 1999.

    Google Scholar 

  • Negrotto, D.; Jolley, M.; Beer, S.; Wenck, A. R.; Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798–803; 2000.

    Article  CAS  Google Scholar 

  • Odell, J.; Caimi, P.; Sauer, B.; Russell, S. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223:369–378; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Onouchi, H.; Nishihama, R.; Kudo, M.; Machida, Y.; Machida, C. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol. Gen. Genet. 247:653–660; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Onouchi, H.; Yokoi, K.; Machida, C.; Matsuzaki, H.; Oshima, Y.; Matsuoka, K.; Nakamura, K.; Machida, Y. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucl. Acids Res. 19:6373–6378; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Russell, S. H.; Hoopes, J. L.; Odell, J. L. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234:49–59; 1992.

    PubMed  CAS  Google Scholar 

  • Schocher, R. J.; Shillito, R. D.; Saul, M. W.; Paszkowski, J.; Potrykus, I. Cotransformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4:1093–1096; 1986.

    Article  CAS  Google Scholar 

  • Slightom, J. L.; Durand-Tardif, M.; Jouanin, L.; Tepfer, D. Nucleotide sequence analysis of the TL-DNA of Agrobacterium rhizogenes type plasmid. J. Biol. 261:108–121; 1986.

    CAS  Google Scholar 

  • Smigocki, A. C.; Owens, L. D. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc. Natl Acad. Sci. USA. 85:5131–5135; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, M.; Gruissem, W. Developmenta, organ-specific, and lightdependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc. Natl Acad. Sci. USA. 84:7104–7108; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, K.; Kasahara, T.; Matsunaga, E.; Ebinuma, H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 22:461–469; 2000a.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, K.; Matsunaga, E.; Ebinuma, H. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep. 18:941–947; 1999.

    Article  CAS  Google Scholar 

  • Sugita, K.; Matsunaga, E.; Kasahara, T.; Ebinuma, H. Transgene stacking in plants in the absence of sexual crossing. Mol. Breed. 6:529–536; 2000b.

    Article  CAS  Google Scholar 

  • Takayama, Y. Studies on the breeding of aspens (I): height growth in the early stage of F1 seedlings of Populus sieboldii Miq.×P. grandidentata Michx., Nichirinshi 50:267–273; 1968.

    Google Scholar 

  • Tepfer, D. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Van der Salm, T. P. M.; Hänisch ten Cate, Ch. H.; Dons, H. J. M. Prospects for applications of rol genes for crop improvement, Plant Mol. Biol. Rep. 14:207–228; 1996.

    Google Scholar 

  • Wabiko, H.; Kagaya, M.; Kodama, I.; Masuda, K.; Kodama, Y.; Yamamoto, H.; Shibano, Y.; Sano, H. Isolation and characterization of diverse nopaline type Ti plasmids of Agrobacterium tumefaciens from Japan. Arch. Microbiol. 152:119–124; 1989.

    Article  CAS  Google Scholar 

  • White, F. F.; Taylor, B. H.; Huffman, G. A.; Gordon, M. P. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164:33–44; 1985.

    PubMed  CAS  Google Scholar 

  • Yoder, J. I.; Goldsbrough, A. P. Transformation systems for generating marker-free transgenic plants. Bio/Technology 12:263–267; 1994.

    Article  CAS  Google Scholar 

  • Zubko, E.; Scutt, C.; Meyer, P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat. Biotechnol. 18:442–445; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebinuma, H., Komamine, A. Mat (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell.Dev.Biol.-Plant 37, 103–113 (2001). https://doi.org/10.1007/s11627-001-0021-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0021-2

Key words

Navigation