Skip to main content
Log in

Selectable marker-free transgenic orange plants recovered under non-selective conditions and through PCR analysis of all regenerants

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Selectable marker (SM) genes have been considered necessary to achieve acceptable rates in the generation of transgenic plants. Genes encoding antibiotic or herbicide resistance are widely used for this purpose. In most cases, once transgenic plants have been regenerated, permanence of SM genes in the plant genome is no longer necessary, and it becomes a matter of public concern. Moreover, the removal of SM genes from transgenic plants could facilitate gene stacking through successive transformations, particularly when the availability of these markers is rather limited for most crop plants. In the genus Citrus, with highly heterozygotic species of long generation cycles, methods implying the segregation and removal of marker transgenes in the progeny are not feasible. Here, we have evaluated the direct production of SM-free citrus plants under non-selective conditions, using a “clean” binary vector carrying only the transgene of interest, and through the recovery of transformants by polymerase chain reaction (PCR) analysis of all regenerated shoots. The response of two different citrus genotypes, Carrizo citrange (intergeneric hybrid of C. sinensis L. Osb. X Poncirus trifoliata L. Raf.) and Pineapple sweet orange (C. sinensis L. Osb.), was evaluated. Our results indicate that, in this system, the competence between transgenic and non-transgenic cells is the main factor determining final transgenic regeneration frequencies. For Carrizo citrange, no transgenic plant could be recovered. For Pineapple sweet orange, marker-free transformation efficiency was 1.7%, paving the way for the viable production of orange transformants carrying only the transgene(s) of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  CAS  PubMed  Google Scholar 

  • Ballester A, Cervera M, Peña L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Cervera M, Pina JA, Juárez J, Navarro L, Peña L (1998) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiol 28:55–66

    CAS  PubMed  Google Scholar 

  • Cervera M, Navarro L, Peña L (2009) Gene stacking in 1-year-cycling APETALA1 citrus plants for a rapid evaluation of transgenic traits in reproductive tissues. J Biotechnol 140:278–282

    Article  CAS  PubMed  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN Jr, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Domínguez A, Fagoaga C, Navarro L, Moreno P, Peña L (2002) Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol Genet Genom 267:544–556

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2007) Statement on the safe use of the nptII antibiotic resistance marker gene in genetically modified plants by the Scientific Panel on genetically modified organisms (GMO). Available online at: http://www.efsa.europa.eu/en/science/gmo/statements0/npt2.html

  • Fleming GH, Olivares-Fuster O, Fatta Del-Bosco S, Grosser JW (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev Biol Plant 36:450–455

    Article  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–477

    Article  CAS  PubMed  Google Scholar 

  • Ghorbel R, Juárez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Goodwin JL, Pastori GM, Davey MR, Jones HD (2005) Selectable markers: antibiotic and herbicide resistance. In: Peña L (ed) Transgenic plants. Methods and protocols. Humana Press, Totowa, pp 191–202

    Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interact 13:649–657

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jia H, Liao M, Verbelen J, Vissenberg K (2007) Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep 26:1961–1965

    Article  CAS  PubMed  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brundstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Li B, Xie C, Qiu H (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep 28:373–386

    Article  CAS  PubMed  Google Scholar 

  • McGarvey P, Kaper JM (1991) A simple and rapid method for screening transgenic plants using the PCR. Biotechniques 11:428–432

    CAS  PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Omar AA, Song W-Y, Grosser JW (2007) Introduction of Xa21, Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast-GFP co-transformation and single plasmid transformation. J Hortic Sci Biotechnol 82:914–923

    CAS  Google Scholar 

  • Peña L, Cervera M, Fagoaga C, Pérez R, Romero J, Juárez J, Pina JA, Navarro L (2004) Agrobacterium-mediated transformation of citrus. In: Curtis IS (ed) Transgenic crops of the world: essential protocols. Kluwer, Dordrecht, pp 145–157

    Google Scholar 

  • Permingeat HR, Alvarez ML, Cervigni GD, Ravizzini RA, Vallejos RH (2003) Stable wheat transformation obtained without selectable markers. Plant Mol Biol 52:415–419

    Article  CAS  PubMed  Google Scholar 

  • Pu XA, Goodman RN (1992) Induction of necrogenesis by Agrobacterium tumefaciens on grape explants. Physiol Mol Plant Pathol 41:241–254

    Article  CAS  Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Tiss Org Cult 74:123–134

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  CAS  PubMed  Google Scholar 

  • Taverniers I, Papazova N, Bertheau Y, De Loose M, Holst-Jensen A (2008) Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environ Biosafety Res 7:197–218

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. Ballester was the recipient of a PhD fellowship provided by the Instituto Nacional de Investigaciones Agrarias (INIA). M. Cervera is the recipient of a “Ramón y Cajal” research contract supported by the Ministerio de Ciencia e Innovación and the European Social Fund. This research was supported by grant AGL2009-08052 from the Ministry of Science and Innovation, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cervera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballester, A., Cervera, M. & Peña, L. Selectable marker-free transgenic orange plants recovered under non-selective conditions and through PCR analysis of all regenerants. Plant Cell Tiss Organ Cult 102, 329–336 (2010). https://doi.org/10.1007/s11240-010-9737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9737-1

Keywords

Navigation