Skip to main content
Log in

Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The technologies allowing the production of transgenic plants without selectable marker genes, is of great interest in public and environmental safety. For generating such marker-free transgenic plants, possibility has been offered by Multi-Auto-Transformation [MAT] vector system, which combines positive selection, using the isopentenyl transferase (ipt) gene, with a site-specific recombination that generates marker-free plants. In this study Agrobacterium tumefaciens strain EHA105 harboring an ipt-type MAT vector, pMAT21, containing lacZ, gus genes and the removable cassette in the T-DNA region was used to produce marker-free transgenic Kalanchoe blossfeldiana Poelln., employing ipt gene as the selectable marker gene. Co-cultivated explants were cultured on hormone- and selective agent-free MS medium, and 85% of the regenerated shoots showed ipt-shooty phenotype with GUS expression. Forty-one morphologically normal shoots were produced during the subculture. More than ninety percent of the normal shoots were ipt , gus but lacZ + as determined by PCR analyses. These results indicate that the ipt phenotype was clearly distinguishable from non-transgenic as well as transgenic marker-free shoots. This study opens interesting perspective for the generation of marker-free transgenic K. blossfeldiana with objective useful transgene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IPT:

Isopentenyl transferase gene

GUS:

β-Glucuronidase

MS medium:

Murashige and skoog medium

References

  • Aida R, Shibata M (2002) High frequency of polyploidization in regenerated plants of Kalanchoe blossfeldiana cultivar ‘Tetra Vulcan’. Plant Biotechnol 19:329–334

    CAS  Google Scholar 

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998. doi:10.1073/pnas.81.19.5994

    Article  PubMed  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780. doi:10.1073/pnas.81.15.4776

    Article  PubMed  CAS  Google Scholar 

  • Craig NL (1988) The mechanism of conservative site-specific recombination. Annu Rev Genet 22:77–105. doi:10.1146/annurev.ge.22.120188.000453

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1990) Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91:79–85. doi:10.1016/0378-1119(90)90165-N

    Article  PubMed  CAS  Google Scholar 

  • Descoings B (2003) Kalanchoe. In: Eggli U, Hattmann HEK (eds) Illustrated handbook of succulent plants Crassulaceae. Springer, New York, pp 143–181

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range cloning system for gram negative bacteria: constuction of gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7351–7374. doi:10.1073/pnas.77.12.7347

    Article  Google Scholar 

  • Ebinuma H, Komamine A (2001) MAT (multi-auto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Plant 37:103–113

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc Natl Acad Sci USA 94:2117–2121. doi:10.1073/pnas.94.6.2117

    Article  PubMed  CAS  Google Scholar 

  • Endo S, Kasahara T, Sugita K, Matsunaga E (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SR1). Plant Cell Rep 20:60–66. doi:10.1007/s002990000279

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichhholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi:10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  • Izumikawa Y, Takei S, Nakamura I, Mii M (2008) Production and characterization of inter sectional hybrids between Kalanchoe spathulata and K. laxiXora( = Bryophyllum crenatum). Euphytica 163:123–130. doi:10.1007/s10681-007-9619-8

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi:10.1007/BF02667740

    Article  CAS  Google Scholar 

  • John MC, Amasino RM (1989) Extensive change in DNA methylation patterns accompanies activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens-transformed plant cells. Mol Cell Biol 9:4298–4303

    PubMed  CAS  Google Scholar 

  • Khan RS, Chin DP, Nakamura I, Mii M (2006) Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Plant Cell Rep 25:914–919. doi:10.1007/s00299-006-0125-6

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Davis RW (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol Gen Genet 242:653–657. doi:10.1007/BF00283419

    Article  PubMed  CAS  Google Scholar 

  • Maeser S, Kahmann R (1991) The Gin recombinase of Mu can catalyse site-specific recombination in plant protoplasts. Mol Gen Genet 230:170–176. doi:10.1007/BF00290665

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM, Scheid OM (1994) Inactivation of repeated genes—DNA–DNA interaction? In: Paszkowski J (ed) Homologous recombination and gene silencing in plants. Kluwer, Dordrecht, pp 271–307

    Google Scholar 

  • Mette MF, van der Winden J, Matzke MA, Matzke AJM (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18:241–248. doi:10.1093/emboj/18.1.241

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsat ZW, van der Winden J, Matzke MA, Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201. doi:10.1093/emboj/19.19.5194

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ogawa Y, Mii M (2004) Screening for highly active β-lactam antibiotics against Agrobacterium tumefaciens. Arch Microbiol 181:331–336. doi:10.1007/s00203-004-0650-z

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matsuzaki H, Oshima Y, Matsuoka K, Nakamura K, Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19:6373–6378. doi:10.1093/nar/19.23.6373

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C (1995) Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet 247:653–660. doi:10.1007/BF00290396

    Article  PubMed  CAS  Google Scholar 

  • Rogers OS, Bendich JA (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual, vol A6. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947. doi:10.1007/s002990050688

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. H. Ebinuma, Pulp and Paper Research, Nippon Paper Industries, Tokyo for providing the MAT vector construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirukkumaran, G., Khan, R.S., Chin, D.P. et al. Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana . Plant Cell Tiss Organ Cult 97, 237–242 (2009). https://doi.org/10.1007/s11240-009-9519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9519-9

Keywords

Navigation