Skip to main content
Log in

Agrobacterium tumefaciens-Mediated Plant Transformation: A Review

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens-mediated plant transformation is the most dominant technique for the transformation of plants. It is used to transform monocotyledonous and dicotyledonous plants. A. tumefaciens apply for stable and transient transformation, random and targeted integration of foreign genes, as well as genome editing of plants. The Advantages of this method include cheapness, uncomplicated operation, high reproducibility, a low copy number of integrated transgenes, and the possibility of transferring larger DNA fragments. Engineered endonucleases such as CRISPR/Cas9 systems, TALENs, and ZFNs can be delivered with this method. Nowadays, Agrobacterium-mediated transformation is used for the Knock in, Knock down, and Knock out of genes. The transformation effectiveness of this method is not always desirable. Researchers applied various strategies to improve the effectiveness of this method. Here, a general overview of the characteristics and mechanism of gene transfer with Agrobacterium is presented. Advantages, updated data on the factors involved in optimizing this method, and other useful materials that lead to maximum exploitation as well as overcoming obstacles of this method are discussed. Moreover, the application of this method in the generation of genetically edited plants is stated. This review can help researchers to establish a rapid and highly effective Agrobacterium-mediated transformation protocol for any plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not available.

References

  1. Prosekov, A. Y., & Ivanova, S. A. (2018). Food security: The challenge of the present. Geoforum, 91, 73–77.

    Article  Google Scholar 

  2. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078.

    Article  PubMed  Google Scholar 

  3. Brück, T., d’Errico, M., & Pietrelli, R. (2019). The effects of violent conflict on household resilience and food security: Evidence from the 2014 Gaza conflict. World Development, 119, 203–223.

    Article  Google Scholar 

  4. Alphey, N., & Bonsall, M. B. (2018). Genetics-based methods for agricultural insect pest management. Agricultural and Forest Entomology, 20, 131–140.

    Article  PubMed  Google Scholar 

  5. Türkoğlu, M., & Hanbay, D. (2019). Plant disease and pest detection using deep learning-based features. Turkish Journal of Electrical Engineering and Computer Sciences, 27, 1636–1651.

    Article  Google Scholar 

  6. Liu, B., & Bruch, R. (2020). Weed detection for selective spraying: A review. Current Robotics Reports, 1, 19–26.

    Article  Google Scholar 

  7. Cheng, S. Y., Show, P.-L., Lau, B. F., Chang, J.-S., & Ling, T. C. (2019). New prospects for modified algae in heavy metal adsorption. Trends in Biotechnology, 37, 1255–1268.

    Article  CAS  PubMed  Google Scholar 

  8. Hong Tan, C., Loke Show, P., Chuan Ling, T., & Loong Lam, H. (2017). Genetic manipulation to increase lipase production in microorganisms–a recent review. Current Biochemical Engineering, 4, 34–42.

    Article  Google Scholar 

  9. Fayyaz, M., Chew, K. W., Show, P. L., Ling, T. C., Ng, I. S., & Chang, J.-S. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 43, 107554.

    Article  CAS  PubMed  Google Scholar 

  10. Khan, S., Ullah, M. W., Siddique, R., Nabi, G., Manan, S., Yousaf, M. and Hou, H. (2016) Role of recombinant DNA technology to improve life. International journal of genomics 2016.

  11. Hiei, Y., Ishida, Y., & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Science, 5, 628.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kado, C. I. (2014). Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Frontiers in Microbiology, 5, 340.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mannion, A. and Morse, S. (2013) GM crops 1996–2012: A review of agronomic, environmental and socio-economic impacts. University of Surrey, Centre for Environmental Strategy Working Paper 4, 1–40.

  14. ISAAA (2023, jan 5) Do you know where biotech crops are grown?

  15. Shehryar, K., Khan, R. S., Iqbal, A., Hussain, S. A., Imdad, S., Bibi, A., Hamayun, L., & Nakamura, I. (2020). Transgene stacking as effective tool for enhanced disease resistance in plants. Molecular Biotechnology, 62, 1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mubeen, H., Naqvi, R. Z., Masood, A., Shoaib, M. W., & Raza, S. (2016). Gene transformation: Methods, uses and applications. Journal of Pharmaceutical and Biological Sciences, 4, 54.

    Google Scholar 

  17. Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8, 246.

    PubMed  PubMed Central  Google Scholar 

  18. Hwang, H.-H., Yu, M., & Lai, E.-M. (2017). Agrobacterium-mediated plant transformation: Biology and applications. The Arabidopsis Book, 15, e0186.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koetle, M. J., Finnie, J. F., Balázs, E., & Van Staden, J. (2015). A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. South African Journal of Botany, 98, 37–44.

    Article  CAS  Google Scholar 

  20. Karami, O. (2008). Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant Journal, 2, 127–137.

    Google Scholar 

  21. Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3, 259–273.

    Article  CAS  PubMed  Google Scholar 

  22. Marion, J., Bach, L., Bellec, Y., Meyer, C., Gissot, L., & Faure, J. D. (2008). Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. The Plant Journal, 56, 169–179.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, H.-Y., Liu, K.-H., Wang, Y.-C., Wu, J.-F., Chiu, W.-L., Chen, C.-Y., Wu, S.-H., Sheen, J., & Lai, E.-M. (2014). AGROBEST: An efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods, 10, 1–16.

    Article  Google Scholar 

  24. Yu, Y.-L., Liang, H.-Z., Wang, S.-F., Lian, Y., Wei, Y.-L., & Wang, T.-F. (2010). Research progress and commercialization on transgenic soybean in China. Soybean Science, 29(1), 143–150.

    Google Scholar 

  25. Venkateswarlu, K., & Nazar, R. (1991). Evidence for T-DNA mediated gene targeting to tobacco chloroplasts. Bio/Technology, 9, 1103–1105.

    Article  CAS  PubMed  Google Scholar 

  26. De Block, M., Schell, J., & Van Montagu, M. (1985). Chloroplast transformation by Agrobacterium tumefaciens. The EMBO Journal, 4, 1367–1372.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews, 67, 16–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandra, S. (2012). Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotechnology Letters, 34, 407–415.

    Article  CAS  PubMed  Google Scholar 

  29. Smith, E. F., & Townsend, C. O. (1907). A plant-tumor of bacterial origin. Science, 25, 671–673.

    Article  CAS  PubMed  Google Scholar 

  30. Watson, R. R., & Preedy, V. R. (2015). Genetically modified organisms in food: Production, safety, regulation and public health. Academic Press.

    Google Scholar 

  31. Zupan, J. R., & Zambryski, P. (1995). Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiology, 107, 1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Husnik, F., & McCutcheon, J. P. (2018). Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology, 16, 67–79.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki, K., Yamashita, I., & Tanaka, N. (2002). Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. The Plant Journal, 32, 775–787.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, K., de Borne, F. D., Julio, E., Obszynski, J., Pale, P., & Otten, L. (2016). Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum. The Plant Journal, 87, 258–269.

    Article  CAS  PubMed  Google Scholar 

  35. Pavlova, O., Matveeva, T., & Lutova, L. (2013). Linaria dalmatica genome contains a homologue of rolC gene of Agrobacterium rhizogenes. Ecological Genetics, 11, 10–15.

    Article  Google Scholar 

  36. White, F. F., Garfinkel, D. J., Huffman, G. A., Gordon, M. P., & Nester, E. W. (1983). Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature, 301, 348–350.

    Article  CAS  Google Scholar 

  37. Kyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G., & Kreuze, J. F. (2015). The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proceedings of the National Academy of Sciences, 112, 5844–5849.

    Article  CAS  Google Scholar 

  38. Douglas, C. J., Staneloni, R. J., Rubin, R., & Nester, E. (1985). Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. Journal of bacteriology, 161, 850–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thomashow, M., Karlinsey, J., Marks, J., & Hurlbert, R. (1987). Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. Journal of bacteriology, 169, 3209–3216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stachel, S. E., Messens, E., Van Montagu, M., & Zambryski, P. (1985). Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318, 624–629.

    Article  Google Scholar 

  41. Stachel, S. E., Nester, E. W., & Zambryski, P. C. (1986). A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proceedings of the National Academy of Sciences, 83, 379–383.

    Article  CAS  Google Scholar 

  42. Barampuram, S., & Zhang, Z. J. (2011). Recent advances in plant transformation Plant Chromosome Engineering (pp. 1–35). m: Humana Press.

    Book  Google Scholar 

  43. Hoekema, A., Hirsch, P. R., Hooykaas, P. J., & Schilperoort, R. A. (1983). A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 303, 179–180.

    Article  CAS  Google Scholar 

  44. Azizi-Dargahlou, S., Ahmadabadi, M. and Valizadeh Kamran, R. (2022) Biolistic transformation and expression of functional chymosin from a codon-optimized synthetic bovine gene in tobacco Plants. Journal of Medicinal plants and By-product.

  45. Spiegel, H., Schillberg, S., & Nölke, G. (2022). Production of recombinant proteins by agrobacterium-mediated transient expression. Recombinant Proteins in Plants (pp. 89–102). Springer.

    Chapter  Google Scholar 

  46. Yan, P., Shen, W., Gao, X., Li, X., Zhou, P., & Duan, J. (2012). High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS ONE, 7, e38186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xing, H.-L., Dong, L., Wang, Z.-P., Zhang, H.-Y., Han, C.-Y., Liu, B., Wang, X.-C., & Chen, Q.-J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 14, 1–12.

    Article  Google Scholar 

  48. Jin, S., Komari, T., Gordon, M., & Nester, E. (1987). Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. Journal of Bacteriology, 169, 4417–4425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Komari, T. (1990). Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Reports, 9, 303–306.

    Article  CAS  PubMed  Google Scholar 

  50. Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6, 271–282.

    Article  CAS  PubMed  Google Scholar 

  51. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., & Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 14, 745–750.

    Article  CAS  PubMed  Google Scholar 

  52. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., & Jones, J. D. (1995). Molecular genetics of plant disease resistance. Science, 268, 661–667.

    Article  CAS  PubMed  Google Scholar 

  53. Matveeva, T. V. (2018). Agrobacterium-mediated transformation in the evolution of plants. Agrobacterium Biology (pp. 421–441). Springer.

    Google Scholar 

  54. Pitzschke, A., & Hirt, H. (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO Journal, 29, 1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gelvin, S. B. (2012). Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Frontiers in plant science, 3, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Christie, P. J. (2004). Type IV secretion: The Agrobacterium VirB/D4 and related conjugation systems. Biochimica et Biophysica Acta (BBA) Molecular Cell Research, 1694, 219–234.

    Article  CAS  PubMed  Google Scholar 

  57. Binns, A. N., & Thomashow, M. F. (1988). Cell biology of Agrobacterium infection and transformation of plants. Annual Reviews in Microbiology, 42, 575–606.

    Article  CAS  Google Scholar 

  58. Park, S., Lee, B.-M., Salas, M., Srivatanakul, M., & Smith, R. (2000). Shorter T-DNA or additional virulence genes improve Agrobactrium-mediated transformation. Theoretical and Applied Genetics, 101, 1015–1020.

    Article  CAS  Google Scholar 

  59. Wu, C., & Sui, Y. (2019). Efficient and fast production of transgenic rice plants by agrobacterium-mediated transformation. Transgenic Plants (pp. 95–103). Springer.

    Chapter  Google Scholar 

  60. Sundararajan, S., Rajendran, V., Nayeem, S., & Ramalingam, S. (2020). Physicochemical factors modulate regeneration and Agrobacterium-mediated genetic transformation of recalcitrant indica rice cultivars-ASD16 and IR64. Biocatalysis and Agricultural Biotechnology, 24, 101519.

    Article  Google Scholar 

  61. Cho, M.-J., Wu, E., Kwan, J., Yu, M., Banh, J., Linn, W., Anand, A., Li, Z., TeRonde, S., & Register, J. C. (2014). Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Reports, 33, 1767–1777.

    Article  CAS  PubMed  Google Scholar 

  62. Anand, A., Bass, S. H., Wu, E., Wang, N., McBride, K. E., Annaluru, N., Miller, M., Hua, M., & Jones, T. J. (2018). An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Molecular Biology, 97, 187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, W. A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, 1–15.

    Google Scholar 

  64. Kumar, R., Mamrutha, H. M., Kaur, A., Venkatesh, K., Sharma, D., & Singh, G. P. (2019). Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Molecular Biology Reports, 46, 1845–1853.

    Article  CAS  PubMed  Google Scholar 

  65. Bartlett, J. G., Alves, S. C., Smedley, M., Snape, J. W., & Harwood, W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. Plant Methods, 4, 1–12.

    Article  Google Scholar 

  66. Harwood, W. A. (2014). A protocol for high-throughput Agrobacterium-mediated barley transformation. Cereal Genomics (pp. 251–260). Springer.

    Chapter  Google Scholar 

  67. Wu, E., & Zhao, Z.-Y. (2017). Agrobacterium-mediated sorghum transformation. Plant Germline Development (pp. 355–364). Springer.

    Chapter  Google Scholar 

  68. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., & Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences, 98, 1871–1876.

    Article  CAS  Google Scholar 

  69. Hayta, S., Smedley, M. A., Clarke, M., Forner, M., & Harwood, W. A. (2021). An efficient Agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Current Protocols, 1, e58.

    Article  CAS  PubMed  Google Scholar 

  70. Dai, C., Li, Y., Li, L., Du, Z., Lin, S., Tian, X., Li, S., Yang, B., Yao, W., & Wang, J. (2020). An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Molecular Breeding, 40, 1–13.

    Article  Google Scholar 

  71. Ahmed, R. I., Ding, A., Xie, M., & Kong, Y. (2018). Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor). International Journal of Molecular Sciences, 19, 2983.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X., & Armstrong, C. L. (2004). Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular & Developmental Biology-Plant, 40, 31–45.

    Article  Google Scholar 

  73. Eck, J. V., Keen, P., & Tjahjadi, M. (2019). Agrobacterium tumefaciens-mediated transformation of tomato. Transgenic plants (pp. 225–234). Springer.

    Google Scholar 

  74. Taak, P., Tiwari, S., & Koul, B. (2020). Optimization of regeneration and Agrobacterium-mediated transformation of Stevia (Stevia rebaudiana Bertoni): A commercially important natural sweetener plant. Scientific reports, 10, 1–12.

    Article  Google Scholar 

  75. Duan, W., Wang, L., & Song, G. (2016). Agrobacterium tumefaciens-mediated transformation of wild tobacco species Nicotiana debneyi, Nicotiana clevelandii, and Nicotiana glutinosa. American Journal of Plant Sciences, 7, 1–7.

    Article  CAS  Google Scholar 

  76. Rai, G. K., Rai, N. P., Kumar, S., Yadav, A., Rathaur, S., & Singh, M. (2012). Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular & Developmental Biology-Plant, 48, 565–578.

    Article  CAS  Google Scholar 

  77. Heidari Japelaghi, R., Haddad, R., Valizadeh, M., Dorani Uliaie, E., & Jalali Javaran, M. (2018). High-efficiency agrobacterium-mediated transformation of tobacco (Nicotiana tabacum). Journal of Plant Molecular Breeding, 6, 38–50.

    Google Scholar 

  78. De Saeger, J., Park, J., Chung, H. S., Hernalsteens, J.-P., Van Lijsebettens, M., Inzé, D., Van Montagu, M., & Depuydt, S. (2021). Agrobacterium strains and strain improvement: Present and outlook. Biotechnology advances, 53, 107677.

    Article  PubMed  Google Scholar 

  79. Niedbała, G., Niazian, M., & Sabbatini, P. (2021). Modeling agrobacterium-mediated gene transformation of tobacco (Nicotiana tabacum)—a model plant for gene transformation studies. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.695110

    Article  PubMed  PubMed Central  Google Scholar 

  80. Niazian, M., Sadat-Noori, S. A., Tohidfar, M., Galuszka, P., & Mortazavian, S. M. M. (2019). Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): An important industrial medicinal plant. Industrial Crops and Products, 132, 29–40.

    Article  CAS  Google Scholar 

  81. Degtyarenko, A., Gorpenchenko, T., Grigorchuk, V., Bulgakov, V., & Shkryl, Y. (2021). Optimization of the transient Agrobacterium-mediated transformation of Panax ginseng shoots and its use to change the profile of ginsenoside production. Plant Cell Tissue and Organ Culture (PCTOC), 146, 357–373.

    Article  CAS  Google Scholar 

  82. Solís-Ramos, L. Y., Ortiz-Pavón, J. C., Andrade-Torres, A., Porras-Murillo, R., Angulo, A. B., & de la Serna, E. C. (2019). Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris) var Brunca. Revista de Biología Tropical, 67, 83–94.

    Article  Google Scholar 

  83. Shun-li, W. A. N. G., Seong Sub, Ku., Xing-guo, Y. E., Cong-fen, H. E., Kwon, S. Y., & Choi, P. S. (2015). Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 14, 469–482.

    Article  Google Scholar 

  84. Varlamova, N. V., Dolgikh, Y. I., Blinkov, A. O., Baranova, E. N., & Khaliluev, M. R. (2021). Effects of different β-lactam antibiotics on indirect tomato (Solanum lycopersicum L.) shoot organogenesis and Agrobacterium tumefaciens growth inhibition in vitro. Antibiotics, 10, 660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song, G.-Q., Walworth, A., & Hancock, J. F. (2012). Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue and Organ Culture (PCTOC), 108, 445–453.

    Article  CAS  Google Scholar 

  86. Zhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA transfer to Tamarix hispida by adding chemical compounds during Agrobacterium tumefaciens culture. Frontiers in Plant Science, 11, 501358.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chakrabarty, R., Viswakarma, N., Bhat, S., Kirti, P., Singh, B., & Chopra, V. (2002). Agrobacterium-mediated transformation of cauliflower: Optimization of protocol and development of Bt-transgenic cauliflower. Journal of Biosciences, 27, 495–502.

    Article  CAS  PubMed  Google Scholar 

  88. Uranbey, S., Sevimay, C., Kaya, M., Ipek, A., Sancak, C., Başalma, D., Er, C., & Özcan, S. (2005). Influence of different co-cultivation temperatures, periods and media on Agrobacterium tumefaciens-mediated gene transfer. Biologia Plantarum, 49, 53–57.

    Article  Google Scholar 

  89. Raja, N. I., Bano, A., Rashid, H., Chaudhry, Z., & Ilyas, N. (2010). Improving Agrobacterium-mediated transformation protocol for integration of XA21 gene in wheat (Triticum aestivum L.). Pakistan Journal of Botany, 42, 3613–3631.

    CAS  Google Scholar 

  90. Wen, S.-S., Ge, X.-L., Wang, R., Yang, H.-F., Bai, Y.-E., Guo, Y.-H., Zhang, J., Lu, M.-Z., Zhao, S.-T., & Wang, L.-Q. (2022). An efficient agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba× P. glandulosa) using calli as explants. International Journal of Molecular Sciences, 23, 2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo, P., Liu, P., Lei, J., Chen, C., Qiu, H., Liu, G., Chen, Z., & Luo, L. (2019). Improvement of plant regeneration and Agrobacterium-mediated genetic transformation of Stylosanthes guianensis. Tropical Grasslands-Forrajes Tropicales, 7, 480–492.

    Article  Google Scholar 

  92. Utami, E. S. W., Hariyanto, S., & Manuhara, Y. S. W. (2018). Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera JJ Sm: An important medicinal orchid. Journal of Genetic Engineering and Biotechnology, 16, 703–709.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Madhulatha, P., Pandey, R., Hazarika, P., & Rajam, M. (2007). High transformation frequency in Agrobacterium-mediated genetic transformation of tomato by using polyamines and maltose in shoot regeneration medium. Physiology and Molecular Biology of Plants, 13, 191–198.

    CAS  Google Scholar 

  94. Manfroi, E., Yamazaki-Lau, E., Grando, M. F., & Roesler, E. A. (2015). Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genetics and Molecular Biology, 38, 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kondo, T., Hasegawa, H., & Suzuki, M. (2000). Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Reports, 19, 989–993.

    Article  CAS  PubMed  Google Scholar 

  96. Hasan, N., Kamruzzaman, M., Islam, S., Hoque, H., Bhuiyan, F. H., & Prodhan, S. H. (2019). Development of partial abiotic stress tolerant Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck through Agrobacterium-mediated transformation method. Journal of Genetic Engineering and Biotechnology, 17, 1–9.

    Article  Google Scholar 

  97. Du, C., Chai, L. A., Liu, C., Si, Y., & Fan, H. (2022). Improved Agrobacterium tumefaciens-mediated transformation using antibiotics and acetosyringone selection in cucumber. Plant Biotechnology Reports, 16, 17–27.

    Article  CAS  Google Scholar 

  98. Azadi, P., Chin, D. P., Kuroda, K., Khan, R. S., & Mii, M. (2010). Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue and Organ Culture (PCTOC), 101, 201–209.

    Article  CAS  Google Scholar 

  99. Liu, Z., Park, B.-J., Kanno, A., & Kameya, T. (2005). The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding, 16, 189–197.

    Article  CAS  Google Scholar 

  100. Polowick, P. L., & Yan, W. (2023). A protocol for Agrobacterium-mediated genetic transformation of Lens culinaris Medik (lentil). Plant Cell, Tissue and Organ Culture., 152(3), 605–618.

    Article  CAS  Google Scholar 

  101. Arun, M., Subramanyam, K., Mariashibu, T. S., Theboral, J., Shivanandhan, G., Manickavasagam, M., & Ganapathi, A. (2015). Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Applied Biochemistry and Biotechnology, 175, 2266–2287.

    Article  CAS  PubMed  Google Scholar 

  102. Sustiprijatno, Waluyo, S. and Suharsono (2022) Transformation of csp gene into tobacco plant mediated by Agrobacterium tumefaciens, in AIP Conference Proceedings, vol. 2462, AIP Publishing LLC: pp. 040007

  103. Hashmi, M. H., Saeed, F., Demirel, U. and Bakhsh, A. (2022) Establishment of highly efficient and reproducible Agrobacterium-mediated transformation system for tomato (Solanum lycopersicum L.). In Vitro Cellular & Developmental Biology-Plant, 1–11.

  104. Bakhsh, A. (2020). Development of efficient, reproducible and stable Agrobacterium-mediated genetic transformation of five potato cultivars. Food Technology and Biotechnology, 58, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, J., Chen, L., Liu, Q., Sun, S., Sokolov, V., & Wang, Y. (2011). Transformation of LRP gene into Brassica napus mediated by Agrobacterium tumefaciens to enhance lysine content in seeds. Russian Journal of Genetics, 47, 1433–1437.

    Article  CAS  Google Scholar 

  106. Kaya, Y., Aksoy, H. M., Edbeib, M. F., Wahab, R. A., Ozyigit, I. I., Hamid, A. A. A., Huyop, F., Mohammed, S. and Aslan, A. (2020) Agrobacterium-mediated transformation of Turkish upland rice (Oryza sativa L.) for Dalapon herbicide tolerance.

  107. Zhang, Z., Coyne, D. P., & Mitra, A. (1997). Factors affecting Agrobacterium-mediated transformation of common bean. Journal of the American Society for Horticultural Science, 122, 300–305.

    Article  CAS  Google Scholar 

  108. Wang, X., Chen, X., Cheng, Q., Zhu, K., Yang, X., & Cheng, Z. (2019). Agrobacterium–mediated Transformation of Kalanchoe laxiflora. Horticultural Plant Journal, 5, 221–228.

    Article  Google Scholar 

  109. Chetty, V., Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, W., & Orozco-Cárdenas, M. (2013). Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports, 32, 239–247.

    Article  CAS  PubMed  Google Scholar 

  110. Dessoky, E. S., Ismail, R. M., Elarabi, N. I., Abdelhadi, A. A., & Abdallah, N. A. (2021). Improvement of sugarcane for borer resistance using Agrobacterium mediated transformation of cry1Ac gene. GM Crops & Food, 12, 47–56.

    Article  Google Scholar 

  111. Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. Springerplus, 3, 1–7.

    Article  Google Scholar 

  112. Wiebke, B., Ferreira, F., Pasquali, G., Bodanese-Zanettini, M. H., & Droste, A. (2006). Influence of antibiotics on embryogenic tissue and Agrobacterium tumefaciens suppression in soybean genetic transformation. Bragantia, 65, 543–551.

    Article  CAS  Google Scholar 

  113. Danilova, S., da Silva, J. T., & Kusnetsov, V. (2006). Novel approaches for Agrobacterium-mediated transformation of maize and ornamental grasses. Floriculture, Ornamental and Plant Biotechnology, 2, 66–69.

    Google Scholar 

  114. Suryanti, E., Rusamana, I., Wahyudi, A. T., Akhdiya, A., & Sukamdjaja, D. (2022). Constructing and expressing acyl-homoserine lactone lactonase gene for enhancing Solanum tuberosum resistance against soft rot disease. Biodiversitas Journal of Biological Diversity. https://doi.org/10.13057/biodiv/d230409

    Article  Google Scholar 

  115. Ali, S., Mannan, A., El Oirdi, M., Waheed, A., & Mirza, B. (2012). Agrobacterium-mediated transformation of rough lemon (Citrus jambhiri Lush) with yeast HAL2 gene. BMC Research Notes, 5, 1–8.

    Article  CAS  Google Scholar 

  116. Rahnama, H. (2010) Agrobacterium Mediated Transformation of Maize (Zea mays L.). Journal of Sciences, Islamic Republic of Iran 21, -.

  117. Sivanandhan, G., Kapil Dev, G., Theboral, J., Selvaraj, N., Ganapathi, A., & Manickavasagam, M. (2015). Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS One, 10, e0124693.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nanasato, Y., Konagaya, K.-I., Okuzaki, A., Tsuda, M., & Tabei, Y. (2013). Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant biotechnology reports, 7, 267–276.

    Article  PubMed  Google Scholar 

  119. Norouzi, P., Malboobi, M. A., Zamani, K., & Yazdi-Samadi, H. (2005). Using a competent tissue for efficient transformation of sugarbeet (Beta vulgaris L.). In Vitro Cellular & Developmental Biology-Plant, 41, 11–16.

    Article  Google Scholar 

  120. Xia, Y., Cao, Y., Ren, Y., Ling, A., Du, K., Li, Y., Yang, J., & Kang, X. (2023). Effect of a suitable treatment period on the genetic transformation efficiency of the plant leaf disc method. Plant Methods, 19, 1–16.

    Article  Google Scholar 

  121. Asande, L. K., Omwoyo, R. O., Oduor, R. O., & Nyaboga, E. N. (2020). A simple and fast Agrobacterium-mediated transformation system for passion fruit KPF4 (Passiflora edulis f. edulis× Passiflora edulis f. flavicarpa). Plant Methods, 16, 1–12.

    Article  Google Scholar 

  122. Ghorbel, R., Juárez, J., Navarro, L., & Pena, L. (1999). Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theoretical and Applied Genetics, 99, 350–358.

    Article  Google Scholar 

  123. Valvekens, D., Montagu, M. V., & Lijsebettens, M. V. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences, 85, 5536–5540.

    Article  CAS  Google Scholar 

  124. Joung, Y., Roh, M., Kamo, K., & Song, J. (2001). Agrobacterium-mediated transformation of Campanula glomerata. Plant Cell Reports, 20, 289–295.

    Article  CAS  Google Scholar 

  125. Pandey, V., Misra, P., Chaturvedi, P., Mishra, M. K., Trivedi, P. K., & Tuli, R. (2010). Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: An important medicinal plant. Plant Cell Reports, 29, 133–141.

    Article  CAS  PubMed  Google Scholar 

  126. Ramadhan, F., Alfiko, Y., Purwantomo, S., Mubarok, A. F., Budinarta, W., Suwanto, A., & Budiarti, S. (2022). A New approach for controlling Agrobacterium tumefaciens post transformation using lytic bacteriophage. Plants, 11, 3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, Z., & Finer, J. J. (2016). Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower (Helianthus annuus L.). In Vitro Cellular & Developmental Biology-Plant, 52, 354–366.

    Article  Google Scholar 

  128. Ashrafi-Dehkordi, E., Alemzadeh, A., Tanaka, N., & Razi, H. (2021). Effects of vacuum infiltration, Agrobacterium cell density and acetosyringone concentration on Agrobacterium-mediated transformation of bread wheat. Journal of Consumer Protection and Food Safety, 16, 59–69.

    Article  CAS  Google Scholar 

  129. Du, C., Fan, H., Liu, C. and Si, Y. (2020) Improved Agrobacterium tumefaciens-mediated transformation of cucumber via modified use of antibiotics and acetosyringone.

  130. Ahansal, K., Abdelwahd, R., Udupa, S. M., Aadel, H., Gaboun, F., Ibriz, M., & Iraqi, D. (2022). Effect of type of mature embryo explants and acetosyringone on agrobacterium-mediated transformation of moroccan durum wheat. Bioscience Journal, 38, e38007.

    Article  Google Scholar 

  131. Sheikholeslam, S. N., & Weeks, D. P. (1987). Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Molecular Biology, 8, 291–298.

    Article  CAS  PubMed  Google Scholar 

  132. Niedbała, G., Niazian, M., & Sabbatini, P. (2021). Modeling agrobacterium-mediated gene transformation of tobacco (Nicotiana tabacum)—a model plant for gene transformation studies. Frontiers in Plant Science, 12, 695110.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liu, S., Ma, J., Liu, H., Guo, Y., Li, W., & Niu, S. (2020). An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. Plant Methods, 16, 1–9.

    Article  Google Scholar 

  134. Ma, R., Yu, Z., Cai, Q., Li, H., Dong, Y., Oksman-Caldentey, K.-M., & Rischer, H. (2020). Agrobacterium-mediated genetic transformation of the medicinal plant Veratrum dahuricum. Plants, 9, 191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gurusaravanan, P., Vinoth, S., & Jayabalan, N. (2020). An improved Agrobacterium-mediated transformation method for cotton (Gossypium hirsutum L. ‘KC3’) assisted by microinjection and sonication. In Vitro Cellular & Developmental Biology-Plant, 56, 111–121.

    Article  CAS  Google Scholar 

  136. Gemechu, E. C., & Amante, G. (2021). Control of browning in plant tissue culture: A Review. Journal of Scientific and Innovative Research, 10, 89–93.

    Article  Google Scholar 

  137. Jones, A. M. P., & Saxena, P. K. (2013). Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS One, 8, e76802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pandey, S., Sundararajan, S., Ramalingam, S., & Pant, B. (2020). Effects of sodium nitroprusside and growth regulators on callus, multiple shoot induction and tissue browning in commercially important Valeriana jatamansi Jones. Plant Cell Tissue and Organ Culture (PCTOC), 142, 653–660.

    Article  CAS  Google Scholar 

  139. Abbasi, H., Naderi, R., Kafi, M., Azadi, P., Shakh-Asadi, M., & Okazaki, K. (2020). Effect of ‘Chloroxynil’on Agrobacterium-mediated transformation efficiency of Lilium cv ‘Manissa.’ Scientia Horticulturae, 271, 109404.

    Article  CAS  Google Scholar 

  140. Kimura, M., Cutler, S., & Isobe, S. (2015). A novel phenolic compound, chloroxynil, improves Agrobacterium-mediated transient transformation in Lotus japonicus. PLoS One, 10, e0131626.

    Article  PubMed  PubMed Central  Google Scholar 

  141. McCullen, C. A., & Binns, A. N. (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annual Review of Cell and Developmental Biology, 22, 101–127.

    Article  CAS  PubMed  Google Scholar 

  142. Lai, E.-M., Chesnokova, O., Banta, L. M., & Kado, C. I. (2000). Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. Journal of Bacteriology, 182, 3705–3716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hu, X., Zhao, J., DeGrado, W. F., & Binns, A. N. (2013). Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proceedings of the National Academy of Sciences, 110, 678–683.

    Article  CAS  Google Scholar 

  144. Nobakht Vakili, A., Bagheri, H., & Azadi, P. (2018). Elimination of macro elements from inoculation and co-cultivation media enhances the efficiency of Agrobacterium-mediated transformation in Petunia. Physiology and Molecular Biology of Plants, 24, 703–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hoshi, Y., Kondo, M., Mori, S., Adachi, Y., Nakano, M., & Kobayashi, H. (2004). Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Reports, 22, 359–364.

    Article  CAS  PubMed  Google Scholar 

  146. Montoro, P., Teinseree, N., Rattana, W., Kongsawadworakul, P. A., & Michaux-Ferriere, N. (2000). Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Reports, 19, 851–855.

    Article  CAS  PubMed  Google Scholar 

  147. Ke, X.-Y., McCormac, A. C., Harvey, A., Lonsdale, D., Chen, D.-F., & Elliott, M. C. (2002). Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica, 126, 333–343.

    Article  CAS  Google Scholar 

  148. Li, Y., Tang, D., Liu, Z., Chen, J., Cheng, B., Kumar, R., Yer, H., & Li, Y. (2022). An improved procedure for Agrobacterium-mediated transformation of ‘Carrizo’Citrange. Plants, 11, 1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dutt, M., Vasconcellos, M., & Grosser, J. (2011). Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell. Tissue and Organ Culture (PCTOC), 107, 79–89.

    Article  CAS  Google Scholar 

  150. Dan, Y., Armstrong, C. L., Dong, J., Feng, X., Fry, J. E., Keithly, G. E., Martinell, B. J., Roberts, G. A., Smith, L. A., & Tan, L. J. (2009). Lipoic acid—an unique plant transformation enhancer. In Vitro Cellular & Developmental Biology-Plant, 45, 630–638.

    Article  CAS  Google Scholar 

  151. Hasan Nudin, N., van Kronenburg, B., Tinnenbroek, I., & Krens, F. (2015). The importance of salicylic acid and an improved plant condition in determining success in Agrobacterium-mediated transformation. XXV International EUCARPIA Symposium Section Ornamentals: Crossing Borders, 1087, 65–69.

    Google Scholar 

  152. Yang, A., He, C., & Zhang, K. (2006). Improvement of Agrobacterium-mediated transformation of embryogenic calluses from maize elite inbred lines. In Vitro Cellular & Developmental Biology-Plant, 42, 215–219.

    Article  CAS  Google Scholar 

  153. Jain, N., Khurana, P., & Khurana, J. P. (2022). A rapid and efficient protocol for genotype-independent, Agrobacterium-mediated transformation of indica and japonica rice using mature seed-derived embryogenic calli. Plant Cell, Tissue and Organ Culture (PCTOC), 151(1), 59–73.

    Article  CAS  Google Scholar 

  154. Liu, S., Shi, Y., Liu, F., Guo, Y., & Lu, M. (2022). LaCl3 treatment improves Agrobacterium-mediated immature embryo genetic transformation frequency of maize. Plant Cell Reports, 41, 1439–1448.

    Article  CAS  PubMed  Google Scholar 

  155. Tan, L. W., Rahman, Z. A., Goh, H.-H., Hwang, D.-J., Ismail, I., & Zainal, Z. (2017). Production of transgenic rice (indica cv. MR219) overexpressing Abp57 gene through agrobacterium-mediated transformation. Sains Malays, 46, 703–711.

    Article  CAS  Google Scholar 

  156. Dargahlou, S. A., Uliaie, E. D., & Bandehagh, A. (2017). Callus induction and plant regeneration from mature embryos of some Iranian wheat (Triticum aestivum L.) genotypes. Journal of Biodiversity and Environmental Sciences, 10, 275–283.

    Google Scholar 

  157. Kannan, P., Parameswari, C., Prasanyaselvam, K., Sridevi, G., & Veluthambi, K. (2017). Introgression of sheath blight disease tolerance from the transgenic rice event Pusa Basmati1-CG27 to the variety White Ponni through backcross breeding. Indian Journal of Genetics and Plant Breeding (The), 77, 501–507.

    Article  CAS  Google Scholar 

  158. Liu, X., Wu, S., Xu, J., Sui, C., & Wei, J. (2017). Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B, 7, 292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., Bogdanove, A. J., & Voytas, D. F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology, 161, 20–27.

    Article  CAS  PubMed  Google Scholar 

  160. Weinthal, D., Tovkach, A., Zeevi, V., & Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science, 15, 308–321.

    Article  CAS  PubMed  Google Scholar 

  161. Daboussi, F., Stoddard, T. J., & Zhang, F. (2015). Engineering meganuclease for precise plant genome modification. Advances in new technology for targeted modification of plant genomes (pp. 21–38). Springer.

    Book  Google Scholar 

  162. Osakabe, Y., & Osakabe, K. (2015). Genome editing with engineered nucleases in plants. Plant and Cell Physiology, 56, 389–400.

    Article  CAS  PubMed  Google Scholar 

  163. Li, J.-F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., & Sheen, J. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. El-Mounadi, K., Morales-Floriano, M. L., & Garcia-Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science, 11, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Schachtsiek, J., & Stehle, F. (2019). Nicotine-free, nontransgenic tobacco (Nicotiana tabacum l.) edited by CRISPR‐Cas9. Plant Biotechnology Journal, 17, 2228.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Johansen, I. E., Liu, Y., Jørgensen, B., Bennett, E. P., Andreasson, E., Nielsen, K. L., Blennow, A., & Petersen, B. L. (2019). High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Scientific Reports, 9, 1–7.

    Article  Google Scholar 

  167. Li, R., Liu, C., Zhao, R., Wang, L., Chen, L., Yu, W., Zhang, S., Sheng, J., & Shen, L. (2019). CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC plant biology, 19, 1–13.

    Google Scholar 

  168. Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional & integrative genomics, 18, 31–41.

    Article  CAS  Google Scholar 

  169. Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., & Wang, J. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular breeding, 39, 1–10.

    Article  Google Scholar 

  170. Chilcoat, D., Liu, Z.-B., & Sander, J. (2017). Use of CRISPR/Cas9 for crop improvement in maize and soybean. Progress in molecular biology and translational science, 149, 27–46.

    Article  CAS  PubMed  Google Scholar 

  171. Collonnier, C., Guyon-Debast, A., Maclot, F., Mara, K., Charlot, F., & Nogué, F. (2017). Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods, 121, 103–117.

    Article  PubMed  Google Scholar 

  172. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., & Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17, 1140–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Luo, M., Li, H., Chakraborty, S., Morbitzer, R., Rinaldo, A., Upadhyaya, N., Bhatt, D., Louis, S., Richardson, T., & Lahaye, T. (2019). Efficient TALEN-mediated gene editing in wheat. Plant Biotechnology Journal, 17(11), 2026.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J.-L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32, 947–951.

    Article  CAS  PubMed  Google Scholar 

  175. Shinoyama, H., Ichikawa, H., Nishizawa-Yokoi, A., Skaptsov, M., & Toki, S. (2020). Simultaneous TALEN-mediated knockout of chrysanthemum DMC1 genes confers male and female sterility. Scientific Reports, 10, 1–14.

    Article  Google Scholar 

  176. Bilichak, A., Sastry-Dent, L., Sriram, S., Simpson, M., Samuel, P., Webb, S., Jiang, F., & Eudes, F. (2020). Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes. Plant Biotechnology Journal, 18, 1307–1316.

    Article  CAS  PubMed  Google Scholar 

  177. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bhandawat, A., Sharma, V., Rishi, V. and K. Roy, J. (2020) Biolistic delivery of programmable nuclease (CRISPR/Cas9) in bread wheat. Biolistic DNA Delivery in Plants: Methods and Protocols, 309–329.

  179. Najafi, S., Bertini, E., D’Incà, E., Fasoli, M., & Zenoni, S. (2023). DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration. Horticulture Research, 10, uhac240.

    Article  PubMed  Google Scholar 

  180. Hu, N., Xian, Z., Li, N., Liu, Y., Huang, W., Yan, F., Su, D., Chen, J., & Li, Z. (2019). Rapid and user-friendly open-source CRISPR/Cas9 system for single-or multi-site editing of tomato genome. Horticulture Research. https://doi.org/10.1038/s41438-018-0082-6

    Article  PubMed  PubMed Central  Google Scholar 

  181. Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34, 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  182. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., & Qiu, J.-L. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688.

    Article  CAS  PubMed  Google Scholar 

  183. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., & Lin, Y. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular plant, 8, 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  184. Char, S. N., Neelakandan, A. K., Nahampun, H., Frame, B., Main, M., Spalding, M. H., Becraft, P. W., Meyers, B. C., Walbot, V., & Wang, K. (2017). An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant biotechnology Journal, 15, 257–268.

    Article  CAS  PubMed  Google Scholar 

  185. Noureen, A., Zuhaib Khan, M., Amin, I., Zainab, T., Ahmad, N., Haider, S., & Mansoor, S. (2022). Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in Solanum tuberosum crop. GM Crops & Food, 13, 97–111.

    Article  Google Scholar 

  186. Tang, T., Yu, X., Yang, H., Gao, Q., Ji, H., Wang, Y., Yan, G., Peng, Y., Luo, H., & Liu, K. (2018). Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Frontiers in Plant Science, 9, 1533.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yang, H., Wu, J.-J., Tang, T., Liu, K.-D., & Dai, C. (2017). CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific Reports, 7, 7489.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Tzfira, T., & Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants: Biology and biotechnology. Current Opinion in Biotechnology, 17, 147–154.

    Article  CAS  PubMed  Google Scholar 

  189. Vergunst, A. C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C. M., Regensburg-Tuı̈nk, T. J., & Hooykaas, P. J. (2000). VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science, 290, 979–982.

    Article  CAS  PubMed  Google Scholar 

  190. Vergunst, A. C., van Lier, M. C., den Dulk-Ras, A., Grosse Stüve, T. A., Ouwehand, A., & Hooykaas, P. J. (2005). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proceedings of the National Academy of Sciences, 102, 832–837.

    Article  CAS  Google Scholar 

  191. Köhler, F., Cardon, G., Pöhlman, M., Gill, R., & Schieder, O. (1989). Enhancement of transformation rates in higher plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant molecular biology, 12, 189–199.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not available

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S A-D proposed the idea of the article, all authors performed the literature search and data analysis, and the draft of the article was written by all authors. All authors critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shahnam Azizi-Dargahlou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not available.

Consent to Participate

Not available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi-Dargahlou, S., pouresmaeil, M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00788-x

Keywords

Navigation