Skip to main content
Log in

Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bar :

bialaphos resistance gene

CIM:

callus-inducing medium

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

GM:

germination medium

HPT:

hygromycin phosphotransferase

MS:

Murashige and Skoog salts

NPTII:

neomycin phosphotransferase II

PAT:

phosphinothricin acetyltransferase

PPT:

phosphinothricin

SIM:

shoot-inducing medium

References

  • Aarts MGM, Dirkse WG, Stiekema WJ, Pereira A (1993) Nature 363:715–717

    Google Scholar 

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Plant Cell Rep 12:7–11

    Google Scholar 

  • Altmann T, Schmidt R, Willmitzer L (1990) In: Abstract of the 4th International Conference on Arabidopsis Research, Vienna, pp 26

  • Bevan M (1984) Nucleic Acids Res 12:8711–8721

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang S-S, Park S-K, Nam H-G (1990) In: Abstract of the 4th International Conference on Arabidopsis Research, Vienna, pp 28

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Nucleic Acids Res 13:4777–4788

    Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele Y, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) EMBO J 6:2513–2518

    Google Scholar 

  • D'Halluin K, De Block M, Denecke J, Janssens J, Leemans J, Reynaerts A, Botterman J (1992) Methods Enzymol 216:415–426

    Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) Nucleic Acids Res 16:6127–6145

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Focus 12:13–15

    Google Scholar 

  • Feldmann KA, Marks MD (1987) Mol Gen Genet 208:1–9

    Google Scholar 

  • Feldmann KA (1991) Plant J 1:71–82

    Google Scholar 

  • Hrouda M, Paszkowski J (1994) Mol Gen Genet 243:106–111

    Google Scholar 

  • Kilby NJ, Leyser HMO, Furner IJ (1992) Plant Mol Biol 20:103–112

    Google Scholar 

  • Long D, Martin M, Sundberg E, Swinburne J, Puangsomlee P, Coupland G (1993) Proc Natl Acad Sci USA 90:10370–10374

    Google Scholar 

  • Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Science 234:464–466

    Google Scholar 

  • Meyerowitz EM (1989) Cell 56:263–269

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sangwan RS, Bourgeois Y, Sangwan-Norreel BS (1991) Mol Gen Genet 230:475–485

    Google Scholar 

  • Schmidt R, Willmitzer L (1988) Plant Cell Rep 7:583–586

    Google Scholar 

  • Tachibana K, Kaneko K (1986) J Pestic Sci 11:297–304

    Google Scholar 

  • Tachibana K, Watanabe T, Sekizawa Y, Takematsu T (1986) J Pestic Sci 11:33–37

    Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Bottennan J (1987) EMBO J 6:2519–2523

    Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Proc Natl Acad Sci USA 85:5536–5540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Potrykus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akama, K., Puchta, H. & Hohn, B. Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker. Plant Cell Reports 14, 450–454 (1995). https://doi.org/10.1007/BF00234053

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234053

Key words

Navigation