Skip to main content

Advertisement

Log in

Plant chemistry and insect sequestration

  • Review Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Most plant families are distinguished by characteristic secondary metabolites, which can function as putative defence against herbivores. However, many herbivorous insects of different orders can make use of these plant-synthesised compounds by ingesting and storing them in their body tissue or integument. Such sequestration of putatively unpalatable or toxic metabolites can enhance the insects’ own defence against enemies and may also be involved in reproductive behaviour. This review gives a comprehensive overview of all groups of secondary plant metabolites for which sequestration by insect herbivores belonging to different orders has been demonstrated. Sequestered compounds include various aromatic compounds, nitrogen-containing metabolites such as alkaloids, cyanogenic glycosides, glucosinolates and other sulphur-containing metabolites, and isoprenoids such as cardiac glycosides, cucurbitacins, iridoid glycosides and others. Sequestration of plant compounds has been investigated most in insects feeding or gathering on Apocynaceae s.l. (Apocynoideae, Asclepiaoideae), Aristolochiaceae, Asteraceae, Boraginaceae, Fabaceae and Plantaginaceae, but it also occurs for some gymnosperms and even lichens. In total, more than 250 insect species have been shown to sequester plant metabolites from at least 40 plant families. Sequestration predominates in the Coleoptera and Lepidoptera, but also occurs frequently in the orders Heteroptera, Hymenoptera, Orthoptera and Sternorrhyncha. Patterns of sequestration mechanisms for various compound classes and common or individual features occurring in different insect orders are highlighted. More research is needed to elucidate the specific transport mechanisms and the physiological processes of sequestration in various insect species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe F, Yamauchi T, Honda K, Omura H, Hayashi N (2001) Sequestration of phenanthroindolizidine alkaloids by an Asclepiadaceae-feeding danaid butterfly, Ideopsis similis. Phytochemistry 56:697–701

    Article  PubMed  CAS  Google Scholar 

  • Abushama FT (1972) Repugnatorial gland of grasshopper Poekilocerus hieroglyphicus (Klug). J Entomol (A) 47:95–100

    Google Scholar 

  • Ackery PR, Nash RJ, Bell EA, Norstog K (1993) Sequestration of MAM-glycosides in insects. In: Stevenson DW, Norstog K (eds) Proceedings of the second international conference on cycad biology. Palm and Cycad Societies of Australia, Milton, pp 3–7

    Google Scholar 

  • Agerbirk N, Müller C, Olsen CE, Chew FS (2006) A common pathway for detoxification of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae). Biochem Syst Ecol 34:189–198

    Article  CAS  Google Scholar 

  • Aldrich JR, Carroll SP, Lusby WR, Thompson MJ, Kochansky JP, Waters RM (1990) Sapindaceae, cyanolipids and bugs. J Chem Ecol 16:199–210

    Article  CAS  Google Scholar 

  • Aliabadi A, Renwick JAA, Whitman DW (2002) Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J Chem Ecol 28:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Amano T, Nishida R, Kuwahara Y, Fukami H (1999) Pharmacophagous acquisition of clerodendrins by the turnip sawfly (Athalia rosae ruficornis) and their role in the mating behavior. Chemoecology 9:145–150

    Article  CAS  Google Scholar 

  • Andersen JF, Plattner RD, Weisleder D (1988) Metabolic transformations of cucurbitacins by Diabrotica virgifera virgifera Leconte and D. undecimpunctata howardi Barber. Insect Biochem 18:71–77

    Article  CAS  Google Scholar 

  • Aplin RT, Rothschild M (1972) Poisonous alkaloids in the body tissue of the garden tiger moth (Arctia caja L.) and the cinnabar moth (Tyria jacobaeae L.) (Lepidoptera). In: De Vries A, Kochva E (eds) Toxins of animal and plant origin. Gordon and Breach Sci Pub, New York, pp 579–595

    Google Scholar 

  • Aplin RT, D’Arcy Ward R, Rothschild M (1975) Examination of the large white butterfly and small white butterflies (Pieris spp.) for the presence of mustard oils and mustard oil glycosides. J Entomol (A) 50(7):3–78

    Google Scholar 

  • Baden CU, Dobler S (2009) Potential benefits of iridoid glycoside sequestration in Longitarsus melanocephalus (Coleoptera, Chrysomelidae). Basic Appl Ecol 10:27–33

    Article  CAS  Google Scholar 

  • Bell TW, Meinwald J (1986) Pheromones of 2 arctiid moths (Creatonotos transiens and Creatonotos gangis)—chiral components from both sexes and achiral female components. J Chem Ecol 12:385–409

    Article  CAS  Google Scholar 

  • Belofsky G, Bowers MD, Janzen S, Stermitz F (1989) Iridoid glycosides of Aureolaria flava and their sequestration by Euphydryas phaeton butterflies. Phytochemistry 28:1601–1604

    Article  CAS  Google Scholar 

  • Benn M, Degrave J, Gnanasunderam C, Hutchins R (1979) Host-plant pyrrolizidine alkaloids in Nyctemera annulata Boisduval—their persistence through the lifecycle and transfer to a parasite. Experientia 35:731–732

    Article  CAS  Google Scholar 

  • Bernays EA, Woodhead S (1982) Incorporation of dietary phenols into the cuticle in the tree locust Anacridium melanorhodon. J Insect Physiol 28:601–606

    Article  CAS  Google Scholar 

  • Bernays E, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by aposematic grasshopper, Zonocerus variegatus. J Zool 182:85–87

    Article  Google Scholar 

  • Biller A, Boppré M, Witte L, Hartmann T (1994) Pyrrolizidine alkaloids in Chromolaena odorata—chemical and chemoecological aspects. Phytochemistry 35:615–619

    Article  CAS  Google Scholar 

  • Blum MS (1983) Detoxication, deactivation, and utilization of plant compounds by insects. In: Hedin PA (ed) Plant resistance to insects. American Chemical Soc, Washington, pp 265–275

    Chapter  Google Scholar 

  • Blum MS, Rivier L, Plowman T (1981) Fate of cocaine in the lymantriid Eloria noyesi, a predator of Erythroxylum coca. Phytochemistry 20:2499–2500

    Article  CAS  Google Scholar 

  • Blum MS, Severson RF, Arrendale RF, Whitman DW, Escoubas P, Adeyeye O, Jones CG (1990) A generalist herbivore in a specialist mode—metabolic, sequestrative, and defensive consequences. J Chem Ecol 16:223–244

    Article  CAS  Google Scholar 

  • Boevé J-L, Schaffner U (2003) Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111

    Article  PubMed  Google Scholar 

  • Bogner F, Boppré M (1989) Single cell recordings reveal hydroxydanaidal as the volatile compound attracting insects to pyrrolizidine alkaloids. Entomol Exp Appl 50:171–184

    Article  CAS  Google Scholar 

  • Boppré M (1978) Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol Exp Appl 24:264–277

    Article  Google Scholar 

  • Boppré M (1984) Redefining pharmacophagy. J Chem Ecol 10:1151–1154

    Article  Google Scholar 

  • Boppré M (1986) Insects pharmacophagously utilizing defensive plant-chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Article  Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids—exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185

    Article  Google Scholar 

  • Boros CA, Stermitz FR, McFarland N (1991) Processing of iridoid glycoside antirrinoside from Maurandya antirrhiniflora (Scrophulariaceae) by Meris paradoxa (Geometridae) and Lepipolys species (Noctuidae). J Chem Ecol 17:1123–1133

    Article  CAS  Google Scholar 

  • Bowers MD (1988) Chemistry and coevolution: iridoid glycosides, plants, and herbivorous insects. In: Spencer KV (ed) Chemical mediation of coevolution. Academic Press, London, pp 133–165

    Google Scholar 

  • Bowers MD (1990) Recycling plant natural products for chemical defense. In: Evans DL (ed) Insect defenses. State University of New York Press, Albany, pp 353–386

    Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores their interactions with secondary plant metabolites. Academic Press, San Diego, pp 297–325

    Google Scholar 

  • Bowers MD (1992) The evolution of unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MB (eds) Insect chemical ecology. An evolutionary approach. Chapman & Hall, New York, pp 216–244

    Google Scholar 

  • Bowers MD (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 331–371

    Google Scholar 

  • Bowers MD (2003) Hostplant suitability and defensive chemistry of the catalpa sphinx, Ceratomia catalpae. J Chem Ecol 29:2359–2367

    Article  PubMed  CAS  Google Scholar 

  • Bowers MD (2008) Chemically defenses in woolly bears: sequestration and efficacy against predators and parasitoids. In: Conner WE (ed) Tiger moths and woolly bears. Oxford University Press, Oxford, pp 83–101

    Google Scholar 

  • Bowers MD, Collinge SK (1992) Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera, Nymphalidae). J Chem Ecol 18:817–831

    Article  CAS  Google Scholar 

  • Bowers MD, Farley S (1990) The behaviour of grey jays, Perisoreus canadensis, towards palatable and unpalatable Lepidoptera. Anim Behav 39:699–705

    Article  Google Scholar 

  • Bowers MD, Larin Z (1989) Acquired chemical defense in the lycaenid butterfly, Eumaeus atala. J Chem Ecol 15:1133–1146

    Article  CAS  Google Scholar 

  • Bowers MD, Puttick GM (1986) Fate of ingested iridoid glycosides in lepidopteran herbivores. J Chem Ecol 12:169–178

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE (1997) Fate of host-plant iridoid glycosides in lepidopteran larvae of Nymphalidae and Arctiidae. J Chem Ecol 23:2955–2965

    Article  CAS  Google Scholar 

  • Bowers MD, Williams EH (1995) Variable chemical defence in the checkerspot butterfly Euphydryas gillettii (Lepidoptera: Nymphalidae). Ecol Entomol 20:208–212

    Article  Google Scholar 

  • Bowers MD, Boockvar K, Collinge SK (1993) Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of the sawfly, Tenthredo grandis (Tenthredinidae). J Chem Ecol 19:815–823

    Article  CAS  Google Scholar 

  • Braekman JC, Daloze D, Pasteels JM (1982) Cyanogenic and other glucosides in a neo-guinean bug Leptocoris isolata—possible precursors in its host-plant. Biochem Syst Ecol 10:355–364

    Article  CAS  Google Scholar 

  • Brand JM, Bracke JW, Markovetz AJ, Wood DL, Browne LE (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254:136–137

    Article  PubMed  CAS  Google Scholar 

  • Brehm G, Hartmann T, Willmott K (2007) Pyrrolizidine alkaloids and pharmacophagous Lepidoptera visitors of Prestonia amabilis (Apocynaceae) in a montane rainforest in Ecuador. Ann Miss Bot Gard 94:463–473

    Article  Google Scholar 

  • Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT (2002) Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond Ser B 269:187–191

    Article  CAS  Google Scholar 

  • Brower LP (1969) Ecological chemistry. Sci Am 220:22–29

    PubMed  CAS  Google Scholar 

  • Brower LP (1984) Chemical defense in butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 109–134

    Google Scholar 

  • Brower LP, Fink LS (1985) A natural toxic defense system—cardenolides in butterflies versus birds. Ann N Y Acad Sci 443:171–188

    Article  PubMed  CAS  Google Scholar 

  • Brower LP, Glazier SC (1975) Localization of heart poisons in monarch butterfly. Science 188:19–25

    Article  PubMed  CAS  Google Scholar 

  • Brower LP, Moffitt CM (1974) Palatability dynamics of cardenolides in monarch butterfly. Nature 249:280–283

    Article  PubMed  CAS  Google Scholar 

  • Brower LP, Williams Kl, McEvoy PB, Flannery MA (1972) Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North-America. Science 177:426–429

    Article  PubMed  CAS  Google Scholar 

  • Brower LP, Gibson DO, Moffitt CM, Panchen AL (1978) Cardenolide content of Danaus chrysippus butterflies from 3 areas of East-Africa. Biol J Linn Soc 10:251–273

    Article  Google Scholar 

  • Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed Asclepias eriocarpa in California. J Chem Ecol 8:579–633

    Article  CAS  Google Scholar 

  • Brown KS (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709

    Article  CAS  Google Scholar 

  • Brown KS (1985) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae). Rev Bras Biol 44:435–460

    Google Scholar 

  • Brown KS (1987) Chemistry at the Solanaceae Ithomiinae interface. Ann Miss Bot Gard 74:359–397

    Article  Google Scholar 

  • Brown KS, Trigo JR (1994) Multi-level complexity in the use of plant allelochemicals by aposematic insects. Chemoecology 5:119–126

    Article  Google Scholar 

  • Brown KS, Trigo JR (1995) The ecological activity of alkaloids. In: Cordell GA (ed) The alkaloids. Academic Press, New York, pp 227–356

    Google Scholar 

  • Brown KS, Cameron DW, Weiss U (1969) Chemical constituents of bright orange aphid Aphis nerii Fonscolombe. I. Neriaphin and 6-hydroxymusizin 8-O-beta-d-glucoside. Tetrahedron Lett 6:471–476

    Article  PubMed  Google Scholar 

  • Brown KS, Trigo JR, Francini RB, Morais ABB, Motta PC (1991) Aposematic insects on toxic host plants: coevolution, colonization, and chemical emancipation. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 375–402

    Google Scholar 

  • Brown KS, Klitzke CF, Berlingeri C, Santos PER (1995) Neotropical swallowtails: chemistry of food plant relationships, population ecology and biosystematics. In: Scriber JM, Tsubaki Y, Lederhouse RC (eds) Swallowtail butterflies: their ecology and evolutionary biology. Scientific Publishers, Gainesville, pp 405–445

    Google Scholar 

  • Brückmann M, Trigo JR, Foglio MA, Hartmann T (2000) Storage and metabolism of radioactively labeled pyrrolizidine alkaloids by butterflies and larvae of Mechanitis polymnia (Lepidoptera: Nymphalidae, Ithomiinae). Chemoecology 10:25–32

    Article  Google Scholar 

  • Brückmann M, Termonia A, Pasteels JM, Hartmann T (2002) Characterization of an extracellular salicyl alcohol oxidase from larval defensive secretions of Chrysomela populi and Phratora vitellinae (Chrysomelina). Insect Biochem Mol Biol 32:1517–1523

    Article  PubMed  Google Scholar 

  • Brust GE, Barbercheck ME (1992) Effect of dietary cucurbitacin-C on southern corn-rootworm (Coleoptera, Chrysomelidae) egg survival. Environ Entomol 21:1466–1471

    Google Scholar 

  • Camara MD (1997a) Physiological mechanisms underlying the costs of chemical defence in Junonia coenia Hübner (Nymphalidae): a gravimetric and quantitative genetic analysis. Evol Ecol 11:451–469

    Article  Google Scholar 

  • Camara MD (1997b) Predator responses to sequestered plant toxins in buckeye caterpillars: are tritrophic interactions locally variable? J Chem Ecol 23:2093–2106

    Article  CAS  Google Scholar 

  • Cardoso MZ, Gilbert LE (2007) A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius). Naturwissenschaften 94:39–42

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Guevara C, Rico-Gray V (2002) Is cycasin in Eumaeus minyas (Lepidoptera: Lycaenidae) a predator deterrent? Interciencia 27:465–470

    Google Scholar 

  • Cavin JC, Bradley TJ (1988) Adaptation to ingestion of beta-carboline alkaloids by Heliconiini butterflies. J Insect Physiol 34:1071–1075

    Article  CAS  Google Scholar 

  • Chen ZL, Zhu DY (1987) Aristolochia alkaloids. In: Brossi A (ed) The alkaloids: chemistry and pharmacology. Academic Press, New York, pp 29–65

    Chapter  Google Scholar 

  • Codella SG, Raffa KF (1995) Host-plant influence on chemical defense in conifer sawflies (Hymenoptera, Diprionidae). Oecologia 104:1–11

    Article  Google Scholar 

  • Cohen JA (1985) Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications. J Chem Ecol 11:85–103

    Article  CAS  Google Scholar 

  • Cohen JA, Brower LP (1983) Cardenolide sequestration by the dogbane tiger moth (Cycnia tenera, Arctiidae). J Chem Ecol 9:521–532

    Article  CAS  Google Scholar 

  • Conner WE, Eisner T, Vandermeer RK, Guerrero A, Meinwald J (1981) Pre-copulatory sexual interaction in an arctiid moth (Utetheisa ornatrix)—role of a pheromone derived from dietary alkaloids. Behav Ecol Sociobiol 9:227–235

    Article  Google Scholar 

  • Conner WE, Roach B, Benedict E, Meinwald J, Eisner T (1990) Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth, Utetheisa ornatrix. J Chem Ecol 16:543–552

    Article  CAS  Google Scholar 

  • Conner WE, Boada R, Schroeder FC, Gonzalez A, Meinwald J, Eisner T (2000) Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc Natl Acad Sci USA 97:14406–14411

    Article  PubMed  CAS  Google Scholar 

  • Culvenor CC, Edgar JA (1972) Dihydropyrrolizine secretions associated with coremata of Utetheisa moths (family Arctiidae). Experientia 28:627–628

    Article  CAS  Google Scholar 

  • Culvenor CCJ, Edgar JA, Smith LW (1981) Pyrrolizidine alkaloids in honey from Echium plantagineum L. J Agric Food Chem 29:958–960

    Article  PubMed  CAS  Google Scholar 

  • Deinzer ML, Thomson PA, Burgett DM, Isaacson DL (1977) Pyrrolizidine alkaloids—their occurrence in honey from tansy ragwort (Senecio jacobaea L). Science 195:497–499

    Article  PubMed  CAS  Google Scholar 

  • Detzel A, Wink M (1995) Evidence for a cardenolide carrier in Oncopeltus fasciatus (Dallas) (Insecta, Hemiptera). Zeitschr Naturforsch C J Biosci 50:127–134

    CAS  Google Scholar 

  • Dobler S (2001) Evolutionary aspects of defense by recycled plant compounds in herbivorous insects. Basic Appl Ecol 2:15–26

    Article  CAS  Google Scholar 

  • Dobler S, Rowell-Rahier M (1994) Production of cardenolides versus sequestration of pyrrolizidine alkaloids in larvae of Oreina species (Coleoptera, Chrysomelidae). J Chem Ecol 20:555–568

    Article  CAS  Google Scholar 

  • Dobler S, Mardulyn P, Pasteels JM, Rowell-Rahier M (1996) Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina. Evolution 50:2373–2386

    Article  Google Scholar 

  • Dobler S, Daloze D, Pasteels JM (1998) Sequestration of plant compounds in a leaf beetle’s defensive secretion: cardenolides in Chrysochus. Chemoecology 8:111–118

    Article  CAS  Google Scholar 

  • Dobler S, Haberer W, Witte L, Hartmann T (2000) Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetles. J Chem Ecol 26:1281–1298

    Article  CAS  Google Scholar 

  • Dowd PF, Smith CM, Sparks TC (1983) Detoxification of plant toxins by insects. Insect Biochem 13:453–468

    Article  CAS  Google Scholar 

  • Duffey SS (1980) Sequestration of plant natural products by insects. Ann Rev Entomol 25:447–477

    Article  CAS  Google Scholar 

  • Duffey SS, Pasteels JM (1993) Transient uptake of hypericin by chrysomelids is regulated by feeding behavior. Physiol Entomol 18:119–129

    Article  CAS  Google Scholar 

  • Duffey SS, Scudder GGE (1972) Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly colored Hemiptera and Coleoptera. J Insect Physiol 18:63–78

    Article  CAS  Google Scholar 

  • Duffey SS, Scudder GGE (1974) Cardiac-glycosides in Oncopeltus fasciatus (Dallas) (Hemiptera-Lygaeidae). 1. Uptake and distribution of natural cardenolides in body. Can J Zool 52:283–290

    Article  Google Scholar 

  • Duffey SS, Blum MS, Isman MB, Scudder GGE (1978) Cardiac-glycosides: a physical system for their sequestration by the milkweed bug. J Insect Physiol 24:639–645

    Article  CAS  Google Scholar 

  • Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc Natl Acad Sci USA 85:5992–5996

    Article  PubMed  CAS  Google Scholar 

  • Dussourd DE, Harvis CA, Meinwald J, Eisner T (1989) Paternal allocation of sequestered plant pyrrolizidine alkaloid to eggs in the danaine butterfly, Danaus gilippus. Experientia 45:896–898

    Article  PubMed  CAS  Google Scholar 

  • Dussourd DE, Harvis CA, Meinwald J, Eisner T (1991) Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc Natl Acad Sci USA 88:9224–9227

    Article  PubMed  CAS  Google Scholar 

  • Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539

    Article  CAS  Google Scholar 

  • Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Solomon-island danaine butterflies—the feeding preferences of the Danainae and Ithomiinae. J Zool 196:385–399

    Article  CAS  Google Scholar 

  • Edgar JA (1984) Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, New York, pp 91–93

    Google Scholar 

  • Edgar JA, Pliske TE, Culvenor CC (1974) Coevolution of danaid butterflies with their host plants. Nature 250:646–648

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf A, Cölln K, Schmitz B, Buck M, Wink M, Schneider D (1990) Organ specific storage of dietary pyrrolizidine alkaloids in the arctiid moth Creatonotos transiens. Zeitschr Naturforsch C J Biosci 45:115–120

    CAS  Google Scholar 

  • Ehmke A, Witte L, Biller A, Hartmann T (1990) Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the Arctiid moth Tyria jacobaeae L. Zeitschr Naturforsch C J Biosci 45:1185–1192

    CAS  Google Scholar 

  • Ehmke A, Rowell-Rahier M, Pasteels JM, Hartmann T (1991) Sequestration of ingested C-14 senecionine N-oxide in the exocrine defensive secretions of chrysomelid beetles. J Chem Ecol 17:2367–2379

    Article  CAS  Google Scholar 

  • Ehmke A, Rahier M, Pasteels JM, Theuring C, Hartmann T (1999) Sequestration, maintenance, and tissue distribution of pyrrolizidine alkaloid N-oxide in larvae of the two Oreina species. J Chem Ecol 25:2385–2395

    Article  CAS  Google Scholar 

  • Eisner T, Meinwald J (1995) The chemistry of sexual selection. Proc Natl Acad Sci USA 92:50–55

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Hendry LB, Peakall DB, Meinwald J (1971) 2, 5-Dichlorophenol (from ingested herbicide) in defensive secretion of grasshopper. Science 172:277–278

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Johanessee JS, Carrel J, Hendry LB, Meinwald J (1974) Defensive use by an insect of a plant resin. Science 184:996–999

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Rossini C, Gonzáles A, Iyengar VK, Siegler MVS, Smedley SR (2002) Paternal investment in egg defence. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 91–116

    Google Scholar 

  • Engler HS, Spencer KC, Gilbert LE (2000) Insect metabolism—preventing cyanide release from leaves. Nature 406:144–145

    Article  PubMed  CAS  Google Scholar 

  • Engler-Chaouat HS, Gilbert LE (2007) De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J Chem Ecol 33:25–42

    Article  PubMed  CAS  Google Scholar 

  • Evans DL, Castoriades N, Badruddine H (1986) Cardenolides in the defense of Caenocoris nerii (Hemiptera). Oikos 46:325–329

    Article  Google Scholar 

  • Ferguson JE, Metcalf RL (1985) Cucurbitacins: plant-derived defensive compounds for diabroticites (Coleoptera: Chrysomelidae). J Chem Ecol 11:311–318

    Article  CAS  Google Scholar 

  • Ferguson JE, Metcalf RL, Fischer DC (1985) Disposition and fate of cucurbitacin-B in 5 species of diabroticites. J Chem Ecol 11:1307–1321

    Article  CAS  Google Scholar 

  • Fink LS, Brower LP (1981) Birds can overcome the cardenolide defense of monarch butterflies in Mexico. Nature 291:67–70

    Article  CAS  Google Scholar 

  • Fitzgerald TD, Stevens MA, Miller S, Jeffers P (2008) Aposematism in Archips cerasivoranus not linked to the sequestration of host-derived cyanide. J Chem Ecol 34:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Fletcher BS, Bateman MA, Hart NK, Lamberton JA (1975) Identification of a fruit-fly Diptera-Tephritidae attractant in an Australian plant, Zieria smithii, as O-methyl eugenol. J Econ Entomol 68:815–816

    CAS  Google Scholar 

  • Fordyce JA (2000) A model without a mimic: Aristolochic acids from the California pipevine swallowtail, Battus philenor hirsuta, and its host plant, Aristolochia californica. J Chem Ecol 26:2567–2578

    Article  CAS  Google Scholar 

  • Fordyce JA (2001) The lethal plant defense paradox remains: inducible host-plant aristolochic acids and the growth and defense of the pipevine swallowtail. Entomol Exp Appl 100:339–346

    Article  CAS  Google Scholar 

  • Francis F, Lognay G, Wathelet JP, Haubruge E (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J Chem Ecol 27:243–256

    Article  PubMed  CAS  Google Scholar 

  • Franke A, Rimpler H, Schneider D (1987) Iridoid glycosides in the butterfly Euphydryas cynthia (Lepidoptera, Nymphalidae). Phytochemistry 26:103–106

    Article  Google Scholar 

  • Frei H, Luthy J, Brauchli J, Zweifel U, Wurgler FE, Schlatter C (1992) Structure-activity-relationships of the genotoxic potencies of 16 pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem Biol Interact 83:1–22

    Article  PubMed  CAS  Google Scholar 

  • Freitas AVL, Trigo JR, Brown KS, Witte L, Hartmann T, Barata LES (1996) Tropane and pyrrolizidine alkaloids in the ithomiines Placidula euryanassa and Miraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology 7:61–67

    Article  CAS  Google Scholar 

  • Frick C, Wink M (1995) Uptake and sequestration of ouabain and other cardiac glycosides in Danaus plexippus (Lepidoptera, Danaidae)—evidence for a carrier-mediated process. J Chem Ecol 21:557–575

    Article  CAS  Google Scholar 

  • Gardner DR, Stermitz FR (1988) Host plant utilization and iridoid glycoside sequestration by Euphydryas anicia (Lepidoptera, Nymphalidae). J Chem Ecol 14:2147–2168

    Article  CAS  Google Scholar 

  • Gebrehiwot L, Beuselinck PR (2001) Seasonal variations in hydrogen cyanide concentration of three Lotus species. Agron J 93:603–608

    CAS  Google Scholar 

  • Gfeller H, Schlunegger UP, Schaffner U, Boeve JL, Ujvary I (1995) Analysis of the chemical defense system in an insect larva by tandem mass-spectrometry. J Mass Spectrom 30:1291–1295

    Article  CAS  Google Scholar 

  • Ghosal S, Datta K, Singh SK, Kumar Y (1990) Telastaside, a stress-related alkaloid-conjugate from Polytela gloriosa, an insect feeding on Amaryllidaceae. J Chem Res 10:334–335

    Google Scholar 

  • Ghosal S, Datta K, Singh SK, Kumar Y (1991) Significance of Amaryllidaceae alkaloids in a unique plant-insect interaction. Ind J Chem Sect B 30:260–264

    Google Scholar 

  • Ghostin J, Habib-Jiwan JL, Rozenberg R, Daloze D, Pasteels JM, Braekman JC (2007) Triterpene saponin hemi-biosynthesis of a leaf beetle’s (Platyphora kollari) defensive secretion. Naturwissenschaften 94:601–605

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI, Alonso A, Brower LP (1988) Behavioral and ecological interaction of foraging mice (Peromyscus melanotis) with overwintering monarch butterflies (Danaus plexippus) in Mexico. Oecologia 75:222–227

    Article  Google Scholar 

  • Gross J, Schumacher K, Schmidtberg H, Vilcinskas A (2008) Protected by fumigants: Beetle perfumes in antimicrobial defense. J Chem Ecol 34:179–188

    Article  PubMed  CAS  Google Scholar 

  • Guilford T (1990) The evolution of aposematism. In: Evans DL, Schmidt JO (eds) Insect defenses. Adaptive mechanisms and strategies of prey and predators. State University of New York Press, Albany, pp 23–61

    Google Scholar 

  • Haberer W, Dobler S (1999) Quantitative analysis of pyrrolizidine alkaloids sequestered from diverse host plants in Longitarsus flea beetles (Coleoptera, Chrysomelidae). Chemoecology 9:169–175

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379

    Article  PubMed  CAS  Google Scholar 

  • Hare J, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effect of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18

    Article  Google Scholar 

  • Hartmann T (1995) Pyrrolizidine alkaloids between plants and insects: a new chapter of an old story. Chemoecology 5:139–146

    Article  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top Curr Chem 209:207–243

    Article  CAS  Google Scholar 

  • Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon Press, Oxford, pp 155–233

    Google Scholar 

  • Hartmann T, Ehmke A, Eilert U, von Borstel K, Theuring C (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L. Planta 177:98–107

    Article  CAS  Google Scholar 

  • Hartmann T, Biller A, Witte L, Ernst L, Boppré M (1990) Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem Syst Ecol 18:549–554

    Article  CAS  Google Scholar 

  • Hartmann T, Witte L, Ehmke A, Theuring C, Rowell-Rahier M, Pasteels JM (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry 45:489–497

    Article  CAS  Google Scholar 

  • Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J Insect Physiol 45:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Witte L, Pasteels JM (2001) Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem Mol Biol 31:1041–1056

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Bernays EA (2003) Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol 29:2603–2608

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Bernays EA (2004a) Phenological fate of plant-acquired pyrrolizidine alkaloids in the polyphagous arctiid Estigmene acrea. Chemoecology 14:207–216

    Article  CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Ernst L, Singer MS, Bernays EA (2004b) Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J Chem Ecol 30:229–254

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Bernays EA, Singer MS (2005a) Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem Mol Biol 35:1083–1099

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Klewer N, Schulz S, Singer MS, Bernays EA (2005b) Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect Biochem Mol Biol 35:391–411

    Article  PubMed  CAS  Google Scholar 

  • Hee AKW, Tan KH (1998) Attraction of female and male Bactrocera papayae to conspecific males fed with methyl eugenol and attraction of females to male sex pheromone components. J Chem Ecol 24:753–764

    Article  CAS  Google Scholar 

  • Hee AKW, Tan KH (2004) Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae. J Chem Ecol 30:2127–2138

    Article  PubMed  CAS  Google Scholar 

  • Hee AKW, Tan KH (2006) Transport of methyl eugenol-derived sex pheromonal components in the male fruit fly, Bactrocera dorsalis. Comp Biochem Physiol C Toxicol Pharmacol 143:422–428

    Article  CAS  Google Scholar 

  • Hegnauer R (1962) Chemotaxonomie der Pflanzen. Birkhäuser, Basel

    Google Scholar 

  • Hegnauer R (1963) Chemotaxonomie der Pflanzen. Birkhäuser, Basel

    Google Scholar 

  • Hegnauer R (1986) Chemotaxonomie der Pflanzen. Birkhäuser, Basel

    Google Scholar 

  • Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawoger A, Turk R, Lange OL, Proksch P (1995) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21:2079–2089

    Article  CAS  Google Scholar 

  • Hilker M, Schulz S (1994) Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. J Chem Ecol 20:1075–1093

    Article  CAS  Google Scholar 

  • Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+,K+-ATPase. J Chem Ecol 22:1921–1937

    Article  CAS  Google Scholar 

  • Isman MB (1977) Dietary influence of cardenolides on larval growth and development of milkweed bug Oncopeltus fasciatus. J Insect Physiol 23:1183–1187

    Article  CAS  Google Scholar 

  • Isman MB, Duffey SS, Scudder GGE (1977a) Cardenolide content of some leaf-feeding and stem-feeding insects on temperate North-American milkweeds (Asclepias spp.). Can J Zool 55:1024–1028

    Article  CAS  Google Scholar 

  • Isman MB, Duffey SS, Scudder GGE (1977b) Variation in cardenolide content of lygaeid bugs, Oncopeltus fasciatus and Lygaeus kalmii kalmii and of their milkweed hosts (Asclepias spp) in Central California. J Chem Ecol 3:613–624

    Article  CAS  Google Scholar 

  • Jansen J, Allwood JW, Marsden-Edwards E, van der Putten WH, Goodacre R, van Dam NM (2009) Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161

    Article  CAS  Google Scholar 

  • Jensen SR (1991) Plant iridoids, their biosynthesis and distribution in angiosperms. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 133–158

    Google Scholar 

  • Jones CG, Whitman DW, Compton SJ, Silk PJ, Blum MS (1989) Reduction in diet breadth results in sequestration of plant-chemicals and increases efficacy of chemical defense in a generalist grasshopper. J Chem Ecol 15:1811–1822

    Article  CAS  Google Scholar 

  • Jordan AT, Jones TH, Conner WE (2005) If you’ve got it, flaunt it: ingested alkaloids affect corematal display behavior in the salt marsh moth, Estigmene acrea. J Insect Sci 5:1–6

    Article  PubMed  Google Scholar 

  • Kazana E, Pope TW, Tibbles L, Bridges M, Pickett JA, Bones AM, Powell G, Rossiter JT (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc Lon Ser B 274:2271–2277

    Article  CAS  Google Scholar 

  • Kelley KC, Johnson KS, Murray M (2002) Temporal modulation of pyrrolizidine alkaloid intake and genetic variation in performance of Utetheisa ornatrix caterpillars. J Chem Ecol 28:669–685

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Tominaga Y, Ikenaga T (2004) Winter cherry bugs feed on plant tropane alkaloids and de-epoxidize scopolamine to atropine. J Chem Ecol 30:2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Kite GC, Horn JM, Romeo JT, Fellows LE, Lees DC, Scofield AM, Smith NG (1990) Alpha-homonojirimycin and 2, 5-dihydroxymethyl-3, 4-dihydroxy-pyrrolidine: alkaloidal glycosidase inhibitors in the moth Urania fulgens. Phytochemistry 29:103–105

    Article  CAS  Google Scholar 

  • Kite GC, Fellows LE, Lees DC, Kitchen D, Monteith GB (1991) Alkaloidal glycosidase inhibitors in nocturnal and diurnal uraniine moths and their respective foodplant genera, Endospermum and Omphalea. Biochem Syst Ecol 19:441–445

    Article  CAS  Google Scholar 

  • Klitzke CF, Brown KS (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99–102

    Article  CAS  Google Scholar 

  • Klitzke CF, Trigo JR (2000) New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochem Syst Ecol 28:313–318

    Article  PubMed  CAS  Google Scholar 

  • Krasnoff SB, Dussourd DE (1989) Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids. J Chem Ecol 15:47–60

    Article  CAS  Google Scholar 

  • Krasnoff SB, Roelofs WL (1989) Quantitative and qualitative effects of larval diet on male scent secretions of Estigmene acrea, Phragmatobia fuliginosa, and Pyrrharctia isabella (Lepidoptera, Arctiidae). J Chem Ecol 15:1077–1093

    Article  CAS  Google Scholar 

  • Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A, Pasteels JM, Boland W (2004) Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. Proc Natl Acad Sci USA 101:13808–13813

    Article  PubMed  CAS  Google Scholar 

  • Kuhn J, Pettersson EM, Feld BK, Nie LH, Tolzin-Banasch K, M’Rabet SM, Pasteels J, Boland W (2007) Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes. J Chem Ecol 33:5–24

    Article  PubMed  CAS  Google Scholar 

  • Kunert M, Søe A, Bartram S, Discher S, Tolzin-Banasch K, Nie L, David A, Pasteels JM, Boland W (2008) De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem Mol Biol 38:895–904

    Article  PubMed  CAS  Google Scholar 

  • L’Empereur KM, Stermitz FR (1990a) Iridoid glycoside content of Euphydryas anicia (Lepidoptera, Nymphalidae) and its major hostplant, Besseya plantaginea (Scrophulariaceae), at a high-plains Colorado site. J Chem Ecol 16:187–197

    Article  Google Scholar 

  • L’Empereur KM, Stermitz FR (1990b) Iridoid glycoside metabolism and sequestration by Poladryas minuta (Lepidoptera, Nymphalidae) feeding on Penstemon virgatus (Scrophulariaceae). J Chem Ecol 16:1495–1506

    Article  Google Scholar 

  • L’Empereur KM, Li YX, Stermitz FR, Crabtree L (1989) Pyrrolizidine alkaloids from Hackelia californica and Gnophaela latipennis, an Hackelia californica-hosted arctiid moth. J Nat Prod 52:360–366

    Article  Google Scholar 

  • Labeyrie E, Dobler S (2004) Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants. Mol Biol Evol 21:218–221

    Article  PubMed  CAS  Google Scholar 

  • Laurent P, Dooms C, Braekman J-C, Daloze D, Habib-Jiwan J-L, Rozenberg R, Termonia A, Pasteels JM (2003) Recycling plant wax constituents for chemical defense: hemi-biosynthesis of triterpene saponins from ß-amyrin in a leaf beetle. Naturwissenschaften 90:524–527

    Article  PubMed  CAS  Google Scholar 

  • Lechtenberg M, Nahrstedt A (1999) Cyanogenic glycosides. In: Ikan R (ed) Naturally occurring glycosides. Wiley, Chichester, pp 147–191

    Google Scholar 

  • Lindigkeit R, Biller A, Buch M, Schiebel HM, Boppré M, Hartmann T (1997) The two faces of pyrrolizidine alkaloids: the role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur J Biochem 245:626–636

    Article  PubMed  CAS  Google Scholar 

  • Loaiza JCM, Cespedes CL, Beuerle T, Theuring C, Hartmann T (2007) Ceroplastes albolineatus, the first scale insect shown to sequester pyrrolizidine alkaloids from its host-plant Pittocaulon praecox. Chemoecology 17:109–115

    Article  CAS  Google Scholar 

  • Malcolm SB (1986) Aposematism in a soft-bodied insect—a case for kin selection. Behav Ecol Sociobiol 18:387–393

    Article  Google Scholar 

  • Malcolm SB (1989) Disruption of web structure and predatory behavior of a spider by plant-derived chemical defenses of an aposematic aphid. J Chem Ecol 15:1699–1716

    Article  CAS  Google Scholar 

  • Malcolm SB (1990) Chemical defence in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1:12–21

    Article  CAS  Google Scholar 

  • Malcolm SB (1991) Cardenolide-mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, San Diego, pp 251–296

    Google Scholar 

  • Malcolm SB (1992) Prey defence and predator foraging. In: Crawley MJ (ed) Natural enemies: the population biology of predators, parasites and diseases. Blackwell, Oxford, pp 458–475

    Google Scholar 

  • Martin RA, Lynch SP (1988) Cardenolide content and thin-layer chromatography profiles of monarch butterflies, Danaus plexippus L. and their larval host-plant milkweed, Asclepias asperula subsp. capricornu (Woods.) Woods. in North Central Texas. J Chem Ecol 14:295–318

    Article  CAS  Google Scholar 

  • Masters AR (1991) Dual role of pyrrolizidine alkaloids in nectar. J Chem Ecol 17:195–205

    Article  CAS  Google Scholar 

  • Matsuda K, Sugawara F (1980) Defensive secretion of chrysomelid larvae Chrysomela vigintipunctata costella (Marseul), C. populi L. and Gastrolina depressa Baly (Colepotera: Chrysomelidae). Appl Entomol Zool 15:316–320

    CAS  Google Scholar 

  • McLain DK, Shure DJ (1985) Host plant toxins and unpalatability of Neacoryphus bicrucis (Hemiptera: Lygaeidae). Ecol Entomol 10:291–298

    Article  Google Scholar 

  • Mead EW, Foderaro TA, Gardner DR, Stermitz FR (1993) Iridoid glycoside sequestration by Thessalia leanira (Lepidoptera, Nymphalidae) feeding on Castilleja integra (Scrophulariaceae). J Chem Ecol 19:1155–1166

    Article  CAS  Google Scholar 

  • Mebs D, Schneider M (2002) Aristolochic acid content of South-East Asian troidine swallowtails (Lepidoptera: Papilionidae) and of Aristolochia plant species (Aristolochiaceae). Chemoecology 12:11–13

    Article  CAS  Google Scholar 

  • Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in exocrine secretion of a male butterfly (Lycorea). Science 151:583–585

    Article  PubMed  CAS  Google Scholar 

  • Melangeli C, Rosenthal GA, Dalman DL (1997) The biochemical basis for L-canavanine tolerance by the tobacco budworm Heliothis virescens (Noctuidae). Proc Natl Acad Sci USA 94:2255–2260

    Article  PubMed  CAS  Google Scholar 

  • Metcalf RL (1986) Coevolutionary adaptations of rootworm beetles (Coleoptera, Chrysomelidae) to cucurbitacins. J Chem Ecol 12:1109–1124

    Article  CAS  Google Scholar 

  • Metcalf RL, Lampman RL (1989) The chemical ecology of diabroticites and Cucurbitaceae. Experientia 45:240–247

    Article  CAS  Google Scholar 

  • Metcalf RL, Metcalf ER (1992) Diabroticite rootworm beetles. In: Metcalf RL, Metcalf ER (eds) Plant kairomones in insect ecology and control. Chapman & Hall, New York, pp 64–108

    Google Scholar 

  • Metcalf RL, Metcalf RA, Rhodes AM (1980) Cucurbitacins as kairomones for diabroticite beetles. Proc Natl Acad Sci USA 77:3769–3772

    Article  PubMed  CAS  Google Scholar 

  • Metcalf RL, Rhodes AM, Metcalf RA, Ferguson J, Metcalf ER, Lu PY (1982) Cucurbitacin contents and diabroticite (Coleoptera, Chrysomelidae) feeding upon Cucurbita spp. Environ Entomol 11:931–937

    CAS  Google Scholar 

  • Mix DB, Guinaudeau H, Shamma M (1982) The aristolochic acids and aristolactams. J Nat Prod 45:657–666

    Article  CAS  Google Scholar 

  • Montllor CB, Bernays EA, Barbehenn RV (1990) Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera, Pyralidae) and a host plant, Genista monspessulana. J Chem Ecol 16:1853–1865

    Article  CAS  Google Scholar 

  • Montllor CB, Bernays EA, Cornelius ML (1991) Responses of two hymenopteran predators to surface chemistry of their prey: significance for an alkaloid-sequestering caterpillar. J Chem Ecol 17:391–399

    Article  CAS  Google Scholar 

  • Moore LV, Scudder GGE (1985) Selective sequestration of milkweed (Asclepias sp.) cardenolides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). J Chem Ecol 11:667–687

    Article  CAS  Google Scholar 

  • Moore LV, Scudder GGE (1986) Ouabain-resistant Na,K-ATPases and cardenolide tolerance in the large milkweed bug, Oncopeltus fasciatus. J Insect Physiol 32:27–33

    Article  CAS  Google Scholar 

  • Morais ABB, Brown KS (1991) Larval foodplant and other effects on troidine guild composition (Papilionidae) in southeastern Brazil. J Res Lepid 30:19–37

    Google Scholar 

  • Morrow PA, Bellas TE, Eisner T (1976) Eucalyptus oil in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24:193–206

    Article  Google Scholar 

  • Müller C (2009) Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae. Phytochem Rev 8:121–134

    Article  CAS  Google Scholar 

  • Müller C, Hilker M (2004) Ecological relevance of fecal matter in Chrysomelidae. In: Jolivet PH, Santiago-Blay JA, Schmitt M (eds) New contributions to the biology of Chrysomelidae. SPC Academic Publishers, The Hague, pp 693–705

    Google Scholar 

  • Müller C, Sieling N (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore—and vice versa. Chemoecology 16:191–201

    Article  CAS  Google Scholar 

  • Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Agerbirk N, Olsen CE, Boevé J-L, Schaffner U, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516

    Article  PubMed  Google Scholar 

  • Müller C, Agerbirk N, Olsen CE (2003) Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13:47–54

    Article  Google Scholar 

  • Nahrstedt A, Davis RH (1981) Cyanogenic glycosides in butterflies—detection and synthesis of linamarin and lotaustralin in the Heliconiinae. Planta Med 42:124–125

    Article  PubMed  CAS  Google Scholar 

  • Nahrstedt A, Davis RH (1983) Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta, Lepidoptera). Comp Biochem Physiol B 75:65–73

    Article  Google Scholar 

  • Nahrstedt A, Davis RH (1986) Uptake of linamarin and lotaustralin from their foodplant by larvae of Zygaena trifolii. Phytochemistry 25:2299–2302

    Article  CAS  Google Scholar 

  • Narberhaus I, Theuring C, Hartmann T, Dobler S (2003) Uptake and metabolism of pyrrolizidine alkaloids in Longitarsus flea beetles (Coleoptera: Chrysomelidae) adapted and non adapted to alkaloid containing host plants. J Comp Physiol B 173:483–491

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus I, Papke U, Theuring C, Beuerle T, Hartmann T, Dobler S (2004a) Direct evidence for membrane transport of host-plant-derived pyrrolizidine alkaloid N-oxides in two leaf beetle genera. J Chem Ecol 30:2003–2022

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus I, Theuring C, Hartmann T, Dobler S (2004b) Time course of pyrrolizidine alkaloid sequestration in Longitarsus flea beetles (Coleoptera, Chrysomelidae). Chemoecology 14:17–23

    Article  CAS  Google Scholar 

  • Narberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels—evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125

    Article  CAS  Google Scholar 

  • Nash RJ, Bell EA, Ackery PR (1992) The protective role of cycasin in Cycad-feeding Lepidoptera. Phytochemistry 31:1955–1957

    Article  CAS  Google Scholar 

  • Nash RJ, Rothschild M, Porter EA, Watson AA, Waigh RD, Waterman PG (1993) Calystegines in Solanum and Datura species and the deaths-head hawk-moth (Acherontia atropus). Phytochemistry 34:1281–1283

    Article  CAS  Google Scholar 

  • Naumann C, Hartmann T, Ober D (2002) Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloid-defended arctiid alkaloids in the moth Tyria jacobaeae. Proc Natl Acad Sci USA 99:6085–6090

    Article  PubMed  CAS  Google Scholar 

  • Nihei K, Shibata K, Kubo I (2002) (+)-2, 3-Dehydro-10-oxo-alpha-isosparteine in Uresiphita reversalis larvae fed on Cytisus monspessulanus leaves. Phytochemistry 61:987–990

    Article  PubMed  CAS  Google Scholar 

  • Nishida R (1995) Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 5(6):127–138

    Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  PubMed  CAS  Google Scholar 

  • Nishida R, Fukami H (1989a) Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J Chem Ecol 15:2549–2563

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H (1989b) Host plant iridoid-based chemical defense of an aphid, Acyrthosiphon nipponicus, against ladybird beetles. J Chem Ecol 15:1837–1845

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H (1990) Sequestration of distasteful compounds by some pharmacophagous insects. J Chem Ecol 16:151–164

    Article  CAS  Google Scholar 

  • Nishida R, Rothschild M (1995) A cyanoglucoside stored by a Sedum-feeding apollo butterfly, Parnassius phoebus. Experientia 51:267–269

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H, Tanaka Y, Magalhaes BP, Yokoyama M, Blumenschein A (1986) Isolation of feeding stimulants of brazilian leaf beetles (Diabrotica speciosa and Cerotoma arcuata) from the root of Ceratosanthes hilariana. Agric Biol Chem 50:2831–2836

    CAS  Google Scholar 

  • Nishida R, Tan KH, Serit M, Lajis NH, Sukari AM, Takahashi S, Fukami H (1988) Accumulation of phenylpropanoids in the rectal glands of males of the oriental fruit-fly, Dacus dorsalis. Experientia 44:534–536

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H, Iriye R, Kumazawa Z (1990) Accumulation of highly toxic ericaceous diterpenoids by the geometrid moth, Arichanna gaschkevitchii. Agric Biol Chem 54:2347–2352

    CAS  Google Scholar 

  • Nishida R, Kim CS, Fukami H, Irie R (1991) Ideamine N-oxides—pyrrolizidine alkaloids sequestered by the danaine butterfly, Idea leuconoe. Agric Biol Chem 55:1787–1792

    CAS  Google Scholar 

  • Nishida R, Yokoyama M, Fukami H (1992) Sequestration of cucurbitacin analogs by New and Old World chrysomelid leaf beetles in the tribe Luperini. Chemoecology 3:19–24

    Article  CAS  Google Scholar 

  • Nishida R, Weintraub JD, Feeny P, Fukami H (1993) Aristolochic acids from Thottea spp (Aristolochiaceae) and the osmeterial secretions of Thottea-feeding troidine swallowtail larvae (Papilionidae). J Chem Ecol 19:1587–1594

    Article  CAS  Google Scholar 

  • Nishida R, Rothschild M, Mummery R (1994) A cyanoglucoside, sarmentosin, from the magpie moth, Abraxas grossulariata, Geometridae, Lepidoptera. Phytochemistry 36:37–38

    Article  CAS  Google Scholar 

  • Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1996) Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J Chem Ecol 22:949–972

    Article  CAS  Google Scholar 

  • Nishida R, Kawai K, Amano T, Kuwahara Y (2004) Pharmacophagous feeding stimulant activity of neo-clerodane diterpenoids for the turnip sawfly, Athalia rosae ruficornis. Biochem Syst Ecol 32:15–25

    Article  CAS  Google Scholar 

  • Orr AG, Trigo JR, Witte L, Hartmann T (1996) Sequestration of pyrrolizidine alkaloids by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical protection of adults against the spider Nephila maculata (Araneidae). Chemoecology 7:68–73

    Article  CAS  Google Scholar 

  • Pasteels JM, Hartmann T (2004) Sequestration of pyrrolizidine alkaloids in Oreina and Platyphora leaf beetles: physiological, ecological and evolutionary aspects. In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) New developments in the biology of Chrysomelidae. SPB Academic Publishing, The Hague, pp 677–691

    Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. Physiol Entomol 8:307–314

    Article  CAS  Google Scholar 

  • Pasteels JM, Daloze D, Rowell-Rahier M (1986) Chemical defense in chrysomelid eggs and neonate larvae. Physiol Entomol 11:29–37

    Article  CAS  Google Scholar 

  • Pasteels JM, Braekman J-C, Daloze D (1988) Chemical defense in the Chrysomelidae. In: Joliviet P, Petitpierre E, Hsiao TH (eds) Biology of Chrysomelidae. Kluwer, Dordrecht, pp 233–252

    Google Scholar 

  • Pasteels JM, Duffey S, Rowell-Rahier M (1990) Toxins in chrysomelid beetles—possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals. J Chem Ecol 16:211–222

    Article  CAS  Google Scholar 

  • Pasteels JM, Eggenberger F, Rowell-Rahier M, Ehmke A, Hartmann T (1992) Chemical defense in chrysomelid leaf beetles—storage of host-derived pyrrolizidine alkaloids versus de novo synthesized cardenolides. Naturwissenschaften 79:521–523

    Article  CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman J-C, Daloze D (1994) Chemical defence of adult leaf beetles updated. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer, Dordrecht, pp 289–301

    Google Scholar 

  • Pasteels JM, Dobler S, Rowell-Rahier M, Ehmke A, Hartmann T (1995) Distribution of autogenous and host-derived chemical defenses in Oreina leaf beetles (Coleoptera, Chrysomelidae). J Chem Ecol 21:1163–1179

    Article  CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Ehmke A, Hartmann T (1996) Host-derived pyrrolizidine alkaloids in Oreina leaf beetles: physiological, ecological and evolutionary aspects. In: Jolivet PHA, Cox ML (eds) Chrysomelidae biology, ecological studies. SPB Academic Publishing, Amsterdam, pp 213–225

    Google Scholar 

  • Pasteels JM, Termonia A, Windsor DM, Witte L, Theuring C, Hartmann T (2001) Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120

    Article  CAS  Google Scholar 

  • Pasteels JM, Theuring C, Windsor DM, Hartmann T (2003a) Uptake and metabolism of 14C-rinderine and 14C-retronecine in leaf-beetles of the genus Platyphora and alkaloid accumulation in the exocrine defensive secretions. Chemoecology 13:55–62

    Article  CAS  Google Scholar 

  • Pasteels JM, Theuring C, Witte L, Hartmann T (2003b) Sequestration and metabolism of protoxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into defensive secretions of adults. J Chem Ecol 29:337–355

    Article  PubMed  CAS  Google Scholar 

  • Plasman V, Plehiers M, Braekman JC, Daloze D, de Biseau JC, Pasteels JM (2001) Chemical defense in Platyphora kollari Baly and Leptinotarsa behrensi Harold (Coleoptera: Chrysomelidae). Hypotheses on the origin and evolution of leaf beetles toxins. Chemoecology 11:107–112

    Article  CAS  Google Scholar 

  • Platt AP, Coppinger RP, Brower LP (1971) Demonstration of the selective advantage of mimetic Limenitis butterflies presented to caged avian predators. Evolution 25:692–701

    Article  Google Scholar 

  • Pliske TE (1975) Courtship behavior and use of chemical communication by males of certain species of ithomiine butterflies (Nymphalidae—Lepidoptera). Ann Entomol Soc Am 68:935–942

    Google Scholar 

  • Pliske TE, Eisner T (1969) Sex pheromone of queen butterfly: biology. Science 164:1170–1172

    Article  PubMed  CAS  Google Scholar 

  • Pliske TE, Edgar JA, Culvenor CCJ (1976) The chemical basis of attraction of ithomiine butterflies to plants containing pyrrolizidine alkaloids. J Chem Ecol 2:255–262

    Article  CAS  Google Scholar 

  • Prieto JM, Schaffner U, Barker A, Braca A, Siciliano T, Boevé J-L (2007) Sequestration of furostanol saponins by Monophadnus sawfly larvae. J Chem Ecol 33:513–524

    Article  PubMed  CAS  Google Scholar 

  • Prudic KL, Khera S, Solyom A, Timmermann BN (2007) Isolation, identification, and quantification of potential defensive compounds in the viceroy butterfly and its larval host-plant, Carolina willow. J Chem Ecol 33:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Pugalenthi P, Livingstone D (1995) Cardenolides (heart poisons) in the painted grasshopper Poecilocerus pictus F (Orthoptera: Pyrgomorphidae) feeding on the milkweed Calotropis gigantea L (Asclepiadaceae). J N Y Entomol Soc 103:191–196

    Google Scholar 

  • Ramos C, Vanin S, Kato M (2009) Sequestration of prenylated benzoic acid and chromenes by Naupactus bipes (Coleoptera: Curculionidae) feeding on Piper gaudichaudianum (Piperaceae). Chemoecology. doi:10.1007/s00049-009-0011-0

  • Raubenheimer D (1989) Cyanoglycoside gynocardin from Acraea horta L. (Lepidoptera, Acraeinae) possible implications for evolution of Acraeine host choice. J Chem Ecol 15:2177–2189

    Article  CAS  Google Scholar 

  • Rausher MD (1980) Host abundance, juvenile survival, and oviposition preference in Battus philenor. Evolution 34:342–355

    Article  Google Scholar 

  • Reichstein T, von Euw J, Parsons JA, Rothschild M (1968) Heart poisons in monarch butterfly—some aposematic butterflies obtain protection from cardenolides present in their food plants. Science 161:861–866

    Article  PubMed  CAS  Google Scholar 

  • Reudler Talsma JH (2007) Costs and benefits or iridoid glycosides in multitrophic systems. Dissertation, Wageningen University, Wageningen, The Netherlands, 151 pp

  • Rimpler H (1991) Sequestration of iridoids by insects. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 314–330

    Google Scholar 

  • Ritland DB, Brower LP (1991) The viceroy butterfly is not a batesian mimic. Nature 350:497–498

    Article  Google Scholar 

  • Roby MR, Stermitz FR (1984) Pyrrolizidine and pyridine monoterpene alkaloids from 2 Castilleja plant hosts of the plume moth, Platyptilia pica. J Nat Prod 47:846–853

    Article  CAS  Google Scholar 

  • Rothschild M (1973) Secondary plant substances and warning colouration in insects. In: van Emden HF (ed) Insects/plant relationships. Oxford University Press, Oxford, pp 59–83

    Google Scholar 

  • Rothschild M, Edgar JA (1978) Pyrrolizidine alkaloids from Senecio vulgaris sequestered and stored by Danaus plexippus. J Zool 186:347–349

    Article  Google Scholar 

  • Rothschild M, Marsh N (1978) Some peculiar aspects of danaid-plant relationships. Entomol Exp Appl 24:637–650

    Article  Google Scholar 

  • Rothschild M, Reichstein T (1976) Some problems associated with the storage of cardiac glycosides by insects. Nova Acta Leopold Suppl 7:507–550

    CAS  Google Scholar 

  • Rothschild M, Reichstein T, von Euw J, Aplin R, Harman RRM (1970a) Toxic Lepidoptera. Toxicon 8:293–299

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, von Euw JV, Reichstein T (1970b) Cardiac glycosides in oleander aphid, Aphis nerii. J Insect Physiol 16:1141–1145

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, von Euw J, Reichstein T (1972) Aristolochic acids stored by Zerynthia polyxena (Lepidoptera). Insect Biochem 2:334–343

    Article  CAS  Google Scholar 

  • Rothschild M, von Euw J, Reichstein T (1973a) Cardiac-glycosides (heart poisons) in polka-dot moth Syntomeida epilais Walk—(Ctenuchidae-Lepidoptera) with some observations on toxic qualities of Amata (=Syntomis) phegea L. Proc Roy Soc Lond Ser B 183:227–247

    Article  CAS  Google Scholar 

  • Rothschild M, von Euw J, Reichstein T (1973b) Cardiac-glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa). J Entomol Ser A Physiol Behav 48:89–90

    CAS  Google Scholar 

  • Rothschild M, von Euw J, Reichstein T, Smith DAS, Pierre J (1975) Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus (L.). Proc Roy Soc Lond Ser B 190:1–31

    Article  CAS  Google Scholar 

  • Rothschild M, Roman MG, Fairbairn JW (1977) Storage of cannabinoids by Arctia caja and Zonocerus elegans fed on chemically distinct strains of Cannabis sativa. Nature 266:650–651

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, Aplin RT, Cockrum PA, Edgar JA, Fairweather P, Lees R (1979) Pyrrolizidine alkaloids in arctiid moths (Lepidoptera) with a discussion on host plant relationships and the role of these secondary plant-substances in the Arctiidae. Biol J Linn Soc 12:305–326

    Article  Google Scholar 

  • Rothschild M, Nash RJ, Bell EA (1986) Cycasin in the endangered butterfly Eumaeus atala florida. Phytochemistry 25:1853–1854

    Article  CAS  Google Scholar 

  • Rowell-Rahier M, Pasteels JM (1986) Economics of chemical defense in Chrysomelinae. J Chem Ecol 12:1189–1203

    Article  CAS  Google Scholar 

  • Rowell-Rahier M, Pasteels JM, Alonsomejia A, Brower LP (1995) Relative unpalatability of leaf beetles with either biosynthesized or sequestered chemical defense. Anim Behav 49:709–714

    Article  Google Scholar 

  • Schaffner U, Boevé JL, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20:3233–3250

    Article  CAS  Google Scholar 

  • Schappert PJ, Shore JS (1999) Effects of cyanogenesis polymorphism in Turnera ulmifolia on Euptoieta hegesia and potential Anolis predators. J Chem Ecol 25:1455–1479

    Article  CAS  Google Scholar 

  • Scherer G, Boppré M (1997) Attraction of Gabonia and Nzerekorena to pyrrolizidine alkaloids–with descriptions of 13 new species and notes on male structural peculiarities (Insecta, Coleoptera, Chrysomelidae, Alticinae). Spixiana 20:7–38

    Google Scholar 

  • Schneider D, Boppré M, Schneider H, Thompson WR, Boriack CJ, Petty RL, Meinwald J (1975) Pheromone precursor and its uptake in male Danaus butterflies. J Comp Physiol 97:245–256

    Article  CAS  Google Scholar 

  • Schneider D, Boppré M, Zweig J, Horsley SB, Bell TW, Meinwald J, Hansen K, Diehl EW (1982) Scent organ development in Creatonotos moths—regulation by pyrrolizidine alkaloids. Science 215:1264–1265

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Schulz S, Priesner E, Ziesmann J, Francke W (1998) Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J Comp Physiol A 182:153–161

    Article  CAS  Google Scholar 

  • Schneider D, Wink M, Sporer F, Lounibos P (2002) Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89:281–294

    Article  PubMed  CAS  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Schroeder FC, del Campo ML, Grant JB, Weibel DB, Smedley SR, Bolton KL, Meinwald J, Eisner T (2006) Pinoresinol: a lignol of plant origin serving for defense in a caterpillar. Proc Natl Acad Sci USA 103:15497–15501

    Article  PubMed  CAS  Google Scholar 

  • Schulz S (1998) Insect-plant interactions—metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur J Org Chem 1:13–20

    Article  Google Scholar 

  • Schulz S, Boppré M, Vane-Wright RI (1993a) Specific mixtures of secretions from male scent organs of African milkweed butterflies (Danainae). Philos Trans R Soc Lond Biol Sci 342:161–181

    Article  CAS  Google Scholar 

  • Schulz S, Franke W, Boppré M, Eisner T, Meinwald J (1993b) Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera: Arctiidae). Proc Natl Acad Sci USA 90:6834–6838

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Gross J, Hilker M (1997) Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron 53:9203–9212

    Article  CAS  Google Scholar 

  • Scudder GGE, Duffey SS (1972) Cardiac-glycosides in Lygaeinae (Hemiptera-Lygaeidae). Can J Zool 50:35–42

    Article  CAS  Google Scholar 

  • Scudder GGE, Meredith J (1982a) Morphological basis of cardiac glycoside sequestration by Oncopeltus fasciatus (Dallas) (Hemiptera, Lygaeidae). Zoomorphology 99:87–101

    Article  Google Scholar 

  • Scudder GGE, Meredith J (1982b) The permeability of the midgut of three insects to cardiac glycosides. J Insect Physiol 28:689–694

    Article  CAS  Google Scholar 

  • Scudder GGE, Moore LV, Isman MB (1986) Sequestration of cardenolides in Oncopeltus fasciatus—morphological and physiological adaptations. J Chem Ecol 12:1171–1187

    Article  CAS  Google Scholar 

  • Seiber JN, Tuskes PM, Brower LP, Nelson CJ (1980) Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L). J Chem Ecol 6:321–339

    Article  CAS  Google Scholar 

  • Self LS, Hodgson E, Guthrie FE (1964) Metabolism of nicotine by tobacco-feeding insects. Nature 204:300–301

    Article  PubMed  CAS  Google Scholar 

  • Shelly TE, Nishida R (2004) Larval and adult feeding on methyl eugenol and the mating success of male oriental fruit flies, Bactrocera dorsalis. Entomol Exp Appl 112:155–158

    Article  Google Scholar 

  • Shen SK, Dowd PF (1991) Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomol Exp Appl 60:51–59

    Article  CAS  Google Scholar 

  • Silva KL, Trigo JR (2002) Structure-activity relationships of pyrrolizidine, alkaloids in insect chemical defense against the orb-weaving spider Nephila clavipes. J Chem Ecol 28:657–668

    Article  PubMed  CAS  Google Scholar 

  • Sime KR, Feeny PP, Haribal MM (2000) Sequestration of aristolochic acids by the pipevine swallowtail. Battus philenor (L.): evidence and ecological implications. Chemoecology 10:169–178

    Article  CAS  Google Scholar 

  • Smyth RR, Tallamy DW, Renwick JAA, Hoffmann MP (2002) Effects of age, sex, and dietary history on response to cucurbitacin in Acalymma vittatum. Entomol Exp Appl 104:69–78

    Article  CAS  Google Scholar 

  • Snook ME, Blum MS, Whitman DW, Arrendale RF, Costello CE, Harwood JS (1993) Caffeoyltartronic acid from catnip (Nepeta cataria)—a precursor for catechol in lubber grasshopper (Romalea guttata) defensive secretions. J Chem Ecol 19:1957–1966

    Article  CAS  Google Scholar 

  • Stermitz FR, Gardner DR, Odendaal FJ, Ehrlich PR (1986) Euphydryas anicia (Lepidoptera, Nymphalidae) utilization of iridoid glycosides from Castilleja and Besseya (Scrophulariaceae) host plants. J Chem Ecol 12:1459–1468

    Article  CAS  Google Scholar 

  • Stermitz FR, Gardner DR, McFarland N (1988) Iridoid glycoside sequestration by 2 aposematic Penstemon-feeding geometrid larvae. J Chem Ecol 14:435–441

    Article  CAS  Google Scholar 

  • Strohmeyer HH, Stamp NE, Jarzomski CM, Bowers MD (1998) Prey species and prey diet affect growth of invertebrate predators. Ecol Entomol 23:68–79

    Article  Google Scholar 

  • Sugeno W, Matsuda K (2002) Adult secretions of four Japanese Chrysomelinae (Coleoptera: Chrysomelidae). Appl Entomol Zool 37:191–197

    Article  CAS  Google Scholar 

  • Szentesi A, Wink M (1991) Fate of quinolizidine alkaloids through 3 trophic levels—Laburnum anagyroides (Leguminosae) and associated organisms. J Chem Ecol 17:1557–1573

    Article  CAS  Google Scholar 

  • Tallamy DW, Whittington DP, Defurio F, Fontaine DA, Gorski PM, Gothro PW (1998) Sequestered cucurbitacins and pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on spotted cucumber beetle eggs and larvae (Coleoptera: Chrysomelidae). Environ Entomol 27:366–372

    Google Scholar 

  • Tallamy DW, Gorski PM, Burzon JK (2000) Fate of male-derived cucurbitacins in spotted cucumber beetle females. J Chem Ecol 26:413–427

    Article  CAS  Google Scholar 

  • Tan KH, Nishida R (2000) Mutual reproductive benefits between a wild orchid, Bulbophyllum patens, and Bactrocera fruit flies via a floral synomone. J Chem Ecol 26:533–546

    Article  CAS  Google Scholar 

  • Tan KH, Tan LT, Nishida R (2006) Floral phenylpropanoid cocktail and architecture of Bulbophyllum vinaceum orchid in attracting fruit flies for pollination. J Chem Ecol 32:2429–2441

    Article  PubMed  CAS  Google Scholar 

  • Teas HJ (1967) Cycasin synthesis in Seirarctia echo (Lepidoptera) larvae fed methylazoxymethanol. Biochem Biophys Res Commun 26:686–690

    Article  PubMed  CAS  Google Scholar 

  • Termonia A, Pasteels JM (1999) Larval chemical defence and evolution of host shifts in Chrysomela leaf beetles. Chemoecology 9:13–23

    Article  CAS  Google Scholar 

  • Termonia A, Hsiao TH, Pasteels JM, Milinkovitch MC (2001) Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc Natl Acad Sci USA 98:3909–3914

    Article  PubMed  CAS  Google Scholar 

  • Termonia A, Pasteels JM, Windsor DM, Milinkovitch MC (2002) Dual chemical sequestration: a key mechanism in transitions among ecological specialization. Proc R Soc Lond Ser B 269:1–6

    Article  CAS  Google Scholar 

  • Theodoratus DH, Bowers MD (1999) Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider, Lycosa carolinensis. J Chem Ecol 25:283–295

    Article  CAS  Google Scholar 

  • Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical Lepidoptera: facts, perspectives and caveats. J Braz Chem Soc 11:551–561

    Article  CAS  Google Scholar 

  • Trigo JR (2008) Chemical ecology of Ithomiine butterflies. In: Epifano F (ed) Current trends in phytochemistry. Research Signpost, Kerala, pp 141–165

    Google Scholar 

  • Trigo JR, Brown AP (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29

    Article  CAS  Google Scholar 

  • Trigo JR, Witte L, Brown KS, Hartmann T, Barata LES (1993) Pyrrolizidine alkaloids in the arctiid moth Hyalurga syma. J Chem Ecol 19:669–679

    Article  CAS  Google Scholar 

  • Trigo JR, Barata LES, Brown KS (1994) Stereochemical inversion of pyrrolizidine alkaloids by Mechanitis polymnia (Lepidoptera, Nymphalidae, Ithomiinae)—specificity and evolutionary significance. J Chem Ecol 20:2883–2899

    Article  CAS  Google Scholar 

  • Trigo JR, Brown KS, Henriques SA, Barata LES (1996a) Qualitative patterns of pyrrolizidine alkaloids in Ithomiinae butterflies. Biochem Syst Ecol 24:181–188

    Article  CAS  Google Scholar 

  • Trigo JR, Brown KS, Witte L, Hartmann T, Ernst L, Barata LES (1996b) Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc 58:99–123

    Article  Google Scholar 

  • Urzúa A, Priestap H (1985) Aristolochic acids from Battus polydamas. Biochem Syst Ecol 13:169–170

    Google Scholar 

  • Urzúa A, Rodriguez R, Cassels B (1987) Fate of ingested aristolochic acids in Battus archidamas. Biochem Syst Ecol 15:687–689

    Article  Google Scholar 

  • van Zoelen AM, van der Meijden E (1991) Alkaloid concentration of different developmental stages of the cinnabar moth (Tyria jacobaeae). Entomol Exp Appl 61:291–294

    Article  Google Scholar 

  • Vaughan FA (1979) Effect of gross cardiac glycoside content of seeds of common milkweed, Asclepias syriaca, on cardiac glycoside uptake by the milkweed bug Oncopeltus fasciatus. J Chem Ecol 5:89–100

    Article  CAS  Google Scholar 

  • Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain—physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589

    Article  CAS  Google Scholar 

  • Veith M, Dettner K, Boland W (1996) Stereochemistry of an alcohol oxidase from the defensive secretion of larvae of the leaf beetle Phaedon armoraciae (Coleoptera: Chrysomelidae). Tetrahedron 52:6601–6612

    Article  CAS  Google Scholar 

  • von Euw J, Reichstein T (1968) Aristolochic acid-I in swallowtail butterfly Pachlioptera aristolochiae (Fabr) (Papilionidae). Israel J Chem 6:659–670

    Google Scholar 

  • von Euw J, Fishelson L, Parsons JA, Reichstein T, Rothschild M (1967) Cardenolides (heart poisons) in a grasshopper feeding on milkweeds. Nature 214:35–39

    Article  Google Scholar 

  • von Euw J, Rothschild M, Reichstein T (1971) Heart poisons (cardiac-glycosides) in lygaeid bugs Caenocoris nerii and Spilostethus pandurus. Insect Biochem 1:373–384

    Article  Google Scholar 

  • von Nickisch-Rosenegk E, Wink M (1993) Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera, Arctiidae). J Chem Ecol 19:1889–1903

    Article  Google Scholar 

  • von Nickisch-Rosenegk E, Detzel A, Wink M, Schneider D (1990a) Carrier-mediated uptake of digoxin by larvae of the cardenolide sequestering moth, Syntomeida epilais. Naturwissenschaften 77:336–338

    Article  Google Scholar 

  • von Nickisch-Rosenegk E, Schneider D, Wink M (1990b) Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctid moth, Creatonotos transiens. Zeitschr Naturforsch C J Biosci 45:881–894

    Google Scholar 

  • Vrieling K (2006) Chemical ecology of the cinnabar moth (Tyria jacobaeae) on a newly recorded host Senecio adonidifolius. Acta Oecol Int J Ecol 30:168–172

    Article  Google Scholar 

  • Weber G, Oswald S, Zöllner U (1986) Die Wirtseignung von Rapssorten unterschiedlichen Glucosinolatgehaltes für Brevicoryne brassicae (L.) und Myzus persicae (Sulzer) (Hemiptera, Aphididae). Zeitschr Pflanzenkrankh Pflanzenschutz 93:113–124

    CAS  Google Scholar 

  • Weintraub JD (1995) Host plant association pattern and phylogeny in the tribe Troidini. In: Scriber JM, Tsubaki Y, Lederhouse RC (eds) Swallotail butterflies: their ecology and evolutionary biology. Scientific Publishers, Gainesville, pp 307–316

    Google Scholar 

  • Weller SJ, Jacobson NL, Conner WE (1999) The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol J Linn Soc 68:557–578

    Article  Google Scholar 

  • Wheeler GS, Slansky F, Yu SJ (2001) Food consumption, utilization and detoxification enzyme activity of larvae of three polyphagous noctuid moth species when fed the botanical insecticide rotenone. Entomol Exp Appl 98:225–239

    Article  CAS  Google Scholar 

  • Williams DE, Reed RL, Kedzierski B, Dannan GA, Guengerich FP, Buhler DR (1989a) Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome-P-450 enzymes in rat-liver. Drug Metab Dispos 17:387–392

    PubMed  CAS  Google Scholar 

  • Williams DE, Reed RL, Kedzierski B, Ziegler DM, Buhler DR (1989b) The role of flavin-containing monooxygenase in the N-oxidation of the pyrrolizidine alkaloid senecionine. Drug Metab Dispos 17:380–386

    PubMed  CAS  Google Scholar 

  • Willinger G, Dobler S (2001) Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochem Syst Ecol 29:335–346

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays EA (ed) Insect-plant interactions. CRC Press, London, pp 131–166

    Google Scholar 

  • Wink M, Legal L (2001) Evidence for two genetically and chemically defined host races of Tyria jacobaeae (Arctiidae, Lepidoptera). Chemoecology 11:199–207

    Article  CAS  Google Scholar 

  • Wink M, Römer P (1986) Acquired toxicity—the advantages of specializing on alkaloid-rich lupins to Macrosiphum albifrons (Aphidae). Naturwissenschaften 73:210–212

    Article  CAS  Google Scholar 

  • Wink M, Schneider D (1988) Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting moth Creatonotos. Naturwissenschaften 75:524–525

    Article  CAS  Google Scholar 

  • Wink M, Schneider D (1990) Fate of plant-derived secondary metabolites in 3 moth species (Syntomis mogadorensis, Syntomeida epilais, and Creatonotos transiens). J Comp Physiol B Biochem Syst Environ Physiol 160:389–400

    Article  CAS  Google Scholar 

  • Wink M, Witte L (1985) Quinolizidine alkaloids in Petteria ramentacea and the infesting aphids, Aphis cytisorum. Phytochemistry 24:2567–2568

    Article  CAS  Google Scholar 

  • Wink M, Witte L (1991) Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera, Aphididae). Entomol Gen 15:237–254

    Google Scholar 

  • Wink M, Hartmann T, Witte L, Rheinheimer J (1982) Interrelationship between quinolizidine alkaloid producing legumes and infesting insects—exploitation of the alkaloid-containing phloem sap of Cytisus scoparius by the broom aphid Aphis cytisorum. Zeitschr Naturforsch C J Biosci 37:1081–1086

    Google Scholar 

  • Wink M, Schneider D, Witte L (1988) Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth, Creatonotos transiens: stereochemical conversion of heliotrone. Zeitschr Naturforsch C J Biosci 43:737–741

    CAS  Google Scholar 

  • Wink M, Montllor CB, Bernays EA, Witte L (1991) Uresiphita reversalis (Lepidoptera, Pyralidae)—carrier-mediated uptake and sequestration of quinolizidine alkaloids obtained from the host plant Teline monspessulana. Zeitschr Naturforsch C J Biosci 46:1080–1088

    CAS  Google Scholar 

  • Wink M, Grimm C, Koschmieder C, Sporer F, Bergeot O (2000) Sequestration of phorbolesters by the aposematically coloured bug Pachycoris klugii (Heteroptera: Scutelleridae) feeding on Jatropha curcas (Euphorbiaceae). Chemoecology 10:179–184

    Article  CAS  Google Scholar 

  • Winter CK, Segall HJ (1989) Metabolism of pyrrolizidine alkaloids. In: Cheeke PR (ed) Toxicants of plant origin, alkaloids. CRC Press, Boca Raton, pp 24–40

    Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids—from plants via aphids to ladybirds. Naturwissenschaften 77:540–543

    Article  CAS  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Nat Acad Sci USA 101:4859–4864

    Article  PubMed  CAS  Google Scholar 

  • Wray V, Davis RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glycosides in butterflies and moths—incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Zeitschr Naturforsch C J Biosci 38:583–588

    Google Scholar 

  • Wu TS, Leu YL, Chan YY (2000) Aristolochic acids as a defensive substance for the aristolochiaceous plant-feeding swallowtail butterfly, Pachliopta aristolochiae interpositus. J Chin Chem Soc 47:221–226

    CAS  Google Scholar 

  • Yasui H (2001) Sequestration of host plant-derived compounds by geometrid moth, Milionia basalis, toxic to a predatory stink bug, Eocanthecona furcellata. J Chem Ecol 27:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Yoder CA, Leonard DE, Lerner J (1976) Intestinal uptake of ouabain and digitoxin in milkweed bug, Oncopeltus fasciatus. Experientia 32:1549–1550

    Article  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306

    Article  PubMed  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Ekstrøm CT, Olsen CE, Møller BL (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem Mol Biol 37:10–18

    Article  PubMed  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Møller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468

    Google Scholar 

Download references

Acknowledgments

We thank M. Boppré, M. D. Bowers, S. Dobler, J. Kuhn, S. B. Malcolm, A. Nahrstedt, R. Nishida and J. R. Trigo as well as several anonymous reviewers for very constructive comments on this review. The authors received financial support from the Deutsche Forschungsgemeinschaft (project MU1829/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opitz, S.E.W., Müller, C. Plant chemistry and insect sequestration. Chemoecology 19, 117–154 (2009). https://doi.org/10.1007/s00049-009-0018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-009-0018-6

Keywords

Navigation