Skip to main content
Log in

Fate of quinolizidine alkaloids through three trophic levels:Laburnum anagyroides (Leguminosae) and associated organisms

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The quinolizidine alkaloids (QA) of golden rain,Laburnum anagyroides, and those of phytophagous insects associated with the plant, as well as of parasitoids of the latter, were analyzed by capillary GLC and GLC-MS. The alkaloid content in samples of vegetative plant parts was high at the beginning of the season, then decreased, while that of reproductive organs was high throughout flowering, pod formation, and maturation. The analyses showed that the QA of the plant passed through two higher trophic levels (herbivorous insects and their parasitoids) and that the alkaloid pattern changed little during the passage. The alkaloids were present in two phytophagous insect species associated with golden rain: the predispersal seed predator,Bruchidius villosus [5–13μg/g fresh weight (fw)], andAphis cytisorum (182–1012μg/g fw), an aphid that feeds on shoots, leaves, and inflorescences. Braconid and chalcidoid parasitoids emerging from the bruchid host also contained alkaloids (1.3–3μg/g fw), as did three foraging ant species,Lasius niger, Formica rufibarbis, andF. cunicularia (45μg/g fw), that visited the aphid colonies or honeydew-covered leaves of aphid-infested plants. The hypothesis that developing bruchid larvae and/or the plant “manipulate” QA supply to infested seeds was not supported, because QA content of leftover endosperm in seeds after bruchid development was similar to that of uninfested seeds. The frass of developing bruchid larvae was rich in QA (31μg/ g dry weight). While aphids sequestered, the bruchid larvae took up and eliminated QA with the frass without chemical transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa, P., Saunders, J.A., Kemper, J., Trumbule, R., Olechno, J., andMartinat, P. 1986. Plant allelochemicals and insect parasitoids: Effects of nicotine onCotesia congregata (Say) (Hymenoptera: Braconidae) andHyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae).J. Chem. Ecol. 12:1319–1328.

    Google Scholar 

  • Bell, E.A. 1971. Comparative biochemistry of non-protein amino acids, pp. 179–206,in J.B. Harborne, D. Boulter and B.L. Turner (eds.). Chemotaxonomy of the Leguminosae. Academic Press, London.

    Google Scholar 

  • Benn, M., De Grave, J., Gnanasunderam, C., andHutchins, R. 1979. Host-plant pyrrolizidine alkaloids inNyctemera annulata Boisduval: Their persistence through the life-cycle and transfer to a parasite.Experientia 35:731–732.

    Google Scholar 

  • Bentley, M.D., Leonard, D.E., Reynolds, E.K., Leach, S., Beck, A.B., andMurakoshi, I. 1984. Lupine alkaloids as larval feeding deterrents for spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae).Ann. Entomol. Soc. Am. 77:398–400.

    Google Scholar 

  • Börner, C. 1952. Europe centralis Aphides—Die Blattläuse Mitteleuropas.Mitt. Thüring. Bot. Ges. Heft 4. Bheft 3. Weimar. 484 pp.

  • Brusse, M.J. 1962. Alkaloid content and aphid infestation inLupinus angustifolius L.N.Z. J. Agric. Res. 5:188–189.

    Google Scholar 

  • Campbell, B.C., andDuffey, S.S. 1979. Tomatine and parasitic wasps: Potential incompatibility of plant antibiosis with biological control.Science 205:700–702.

    Google Scholar 

  • Campbell, B. andDuffey, S.S. 1981. Alleviation of α-tomatine-induced toxicity to the parasitoid,Hyposoter exiguae, by phytosterols in the diet of the host,Heliothis zea.J. Chem. Ecol. 7:927–946.

    Google Scholar 

  • Dreyer, D.L., Jones, K.C., andMolyneux, R.J. 1985. Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of indolizidine alkaloid swainsonine.J. Chem. Ecol. 11:1045–1051.

    Google Scholar 

  • Escherich, K. 1923. Die Forstinsekten Mitteleuropas. B.2. Paul Parey Verlag, Berlin. 662 pp.

    Google Scholar 

  • Fischer, A. 1938.Spermophagus cisti F. (syn.Bruchus cisti F.) als Schädling der Wildformen vonLupinus angustifolius L. undLupinus luteus L.Z. Pflanzenkrankh. Pflanzenschutz 48:592–597.

    Google Scholar 

  • Greinwald, R., Schultze, W., andCzygan, F.-C. 1990. Über der Alkaloidzusammensetzung der oberirdischen Teile vonLaburnum watereri (Kirchn.) Dipp.Biochem. Physiol. Pflanzen 186:1–10.

    Google Scholar 

  • Gruppe, A., andRömer, P. 1988. The lupin aphid (Macrosiphum albifrons Essig, 1911) (Hom., Aphididae) in West Germany: Its occurrence, host plants and natural enemies.J. Appl. Entomol. 106:135–143.

    Google Scholar 

  • Hoffmann, A. 1945. Faune de France. 44. Coléoptères Bruchides et Anthribides. Lechevalier, Paris. 184 pp.

    Google Scholar 

  • Janzen, D.H. 1976. Two patterns of predispersal seed predation by insects on Central American deciduous forest trees, pp. 179–188,in J. Burley and B.T. Styles (eds.). Tropical Trees, Variation, Breeding, and Conservation. Linnaean Society Symposium Series 2, London.

  • Kinghorn, A.D., andBalandrin, M.F. 1984. Quinolizidine alkaloids of the Leguminosae: structural types, analysis, chemotaxonomy, and biological activities, pp. 105–149,in W.S. Peiletier (ed.). Alkaloids: Chemical and Biological Perspectives. John Wiley & Sons, New York.

    Google Scholar 

  • Kiss, F. 1895. Rovarkárositások a szegedi m. kir. erdögondnoksåg kerületében [Damages caused by insect pests in the Royal Hungarian Forest at Szeged].Erdészeti Lapok 34:1025–1030 (in Hungarian).

    Google Scholar 

  • Krécsy, B. 1886. Az akáczfa level-tetü tömeges megjelenéséröl [An outbreak of black locust aphid].Rovartani Lapok 3:148 (in Hungarian).

    Google Scholar 

  • Luca, Y. de 1970. Catalogue des metazoaires parasites et predateurs de bruchides (Coléoptères).Ann. Soc. Hortic. Hist. Nat. Hérault 110:1–23.

    Google Scholar 

  • Luca, Y. de 1977. Catalogue des metazoaires parasites et predateurs des Bruchides (Col.) (troisième note).Bull. Soc. Etud. Sci. Nat. Nimes 55:5–22.

    Google Scholar 

  • Mears, J.A., andMabry, T.J. 1971. Alkaloids in the Leguminosae, pp. 73–178,in J.B. Harborne, D. Boulter, and B.L. Turner (eds.). Chemotaxonomy of the Leguminosae. Academic Press, London.

    Google Scholar 

  • Medvedeva, G.S. (ed.). 1978. Opredelitel nasekomikh Europeiskoi tschasti SSSR, Vol. III. Perepontschatokrilie. 2 [A guide for the identification of insects of the European part of the Soviet Union. Vol. III. Hymenoptera. 2], Nauka, Leningrad. 758 pp. (in Russian).

    Google Scholar 

  • Nowotnowna, A. 1928.Pamietniki PINGW 9:5–15. (No title was available. Cited in Waller and Nowacki, 1978.)

    Google Scholar 

  • Pöhm, M. 1966. Cytisin undN-Methylcytisin in Keimpflanzen.Abh. Dtsch. Akad. Kl. Chem. 3:251–254.

    Google Scholar 

  • Price, P.W., Bouton, C.E., Gross, P., McPheron, P.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies.Annu. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Soó, R. 1966. A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve. II [Plant taxonomy and biogeography of the Hungarian flora and vegetation]. Akad. Kiadó, Budapest. 655 pp. (in Hungarian).

    Google Scholar 

  • Smith, B.D. 1966. Effect of the plant alkaloid sparteine on the distribution of the aphidAcyrthosiphon spartii (Koch).Nature 212:213–214.

    Google Scholar 

  • Steffan, J.R. 1981. The parasites of bruchids, pp. 223–229,in V. Labeyrie (ed.). The Ecology of Bruchids Attacking Legumes (Pulses). Series on Entomology, Vol. 19. Dr. W. Junk Publ., The Hague.

    Google Scholar 

  • Stephenson, A.G. 1981. Flower and fruit abortion: Proximate causes and ultimate factors.Annu. Rev. Ecol. Syst. 12:253–279.

    Google Scholar 

  • Thorpe, K.W., andBarbosa, P. 1986. Effects of consumption of high and low nicotine tobacco byManduca sexta (Lepidoptera: Sphingidae) on survival of gregarious endoparasitoidCotesia congregata (Hymenoptera: Braconidae).J. Chem. Ecol. 12:1329–1337.

    Google Scholar 

  • Thurston, R., andFox, P.M. 1972. Inhibition by nicotine of emergence ofApanteles congregatus from its host, the tobacco hornworm.Ann. Entomol. Soc. Am. 65:547–550.

    Google Scholar 

  • Tyski, S., Markiewicz, M., Gulewicz, K., andTwardowski, T. 1988. The effect of lupin alkaloids and ethanol extracts from seeds ofLupinus angustifolius on selected bacterial strains.J. Plant Physiol. 133:240–242.

    Google Scholar 

  • Vadas, J. 1911. Az akácfa monográfiája, különös tekintettel erdogazdasági jelentöségére [A monograph of the black locust with special regard to its forestry significance], Pátria Irod. Váll. Nyomd. Rt., Budapest. 236 pp. (in Hungarian).

    Google Scholar 

  • Wahl, B. 1925. Bericht über die Tätigkeit der Bundesanstalt für Pflanzenschutz in Wien im Jahre 1924.Z. Landw. Versuchsw. Deutschösst. 28:21–48 (only an abstract fromRev. Appl. Entomol. 14:189, 1926).

    Google Scholar 

  • Waller, G.R., andNowacki, E.K. 1978. Alkaloid Biology and Metabolism in Plants. Plenum Press, New York. 294 pp.

    Google Scholar 

  • Wink, M. 1983. Inhibition of seed germination by quinolizidine alkaloids. Aspects of allelopathy inLupinus albus L.Planta 158:365–368.

    Google Scholar 

  • Wink, M. 1984a. Chemical defense of Leguminosae. Are quinolizidine alkaloids part of the anti-microbial defense system of lupins?Z. Naturforsch. 39c:548–552.

    Google Scholar 

  • Wink, M. 1984b. Biochemistry and chemical ecology of lupin alkaloids, pp. 326–343,in Proceedings, 3rd International Lupin Congress, La Rochelle, France, 1984.

    Google Scholar 

  • Wink, M. 1984c. Chemical defense of lupins. Mollusc-repellent properties of quinolizidine alkaloids.Z. Naturforsch. 39c:553–558.

    Google Scholar 

  • Wink, M. 1984d. N-Methylation of quinolizidine alkaloids: An S-adenosyl-L-methionine: cytisine N-methyltransferase fromLaburnum anagyroides plants and cell cultures ofL. alpinum andCytisus canariensis.Planta 161:339–344.

    Google Scholar 

  • Wink, M. 1985. Chemische Verteidigung der Lupinen: Zur biologischen Bedeutung der Chinoli-zidinalkaloide.Plant Syst. Evol. 150:65–81.

    Google Scholar 

  • Wink, M. 1987. Chemical ecology of quinolizidine alkaloids, pp. 524–533,in G.R. Waller (ed.). Allelochemicals. Role in Agriculture and Forestry. ACS Symposium Series 330, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Wink, M. 1988. Plant breeding: importance of plant secondary metabolism for plant breeding.Theor. Appl. Genet. 75:225–233.

    Google Scholar 

  • Wink, M., andHartmann, T. 1981. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation inLupinus polyphyllus.Z. Pflanzenphysiol. 102:337–344.

    Google Scholar 

  • Wink, M., andRömer, P. 1986. Acquired toxicity-the advantages of specializing on alkaloid-rich lupins toMacrosiphum albifrons (Aphidae).Naturwissenschaften 73:210–212.

    Google Scholar 

  • Wink, M., andWitte, L. 1984. Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruits ofLupinus albus L.Planta 161:519–524.

    Google Scholar 

  • Wink, M., andWitte, L. 1985a. Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell cultures.Z. Naturforsch. 40c:767–775.

    Google Scholar 

  • Wink, M., andWitte, L. 1985b. Quinolizidine alkaloids inPetteria ramentacea and the infesting aphids,Aphis cytisorum.Phytochemistry 24:2567–2568.

    Google Scholar 

  • Wink, M., Hartmann, T., Witte, L., andRheinheimer, J. 1982. Interrelationship between quinolizidine alkaloid producing legumes and infesting insects: Exploitation of the alkaloid-containing phloem sap ofCytisus scoparius by the broom aphidAphis cytisorum.Z. Naturforsch. 37c:1081–1086.

    Google Scholar 

  • Wink, M., Witte, L., Hartmann, T., Theuring, C., andVolz, V. 1983. Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: GeneraLupinus, Cytisus, Baptisia, Genista, Laburnum, andSophora.Planta Med. 48:253–257.

    Google Scholar 

  • Wink, M., Heinen, H.J., Vogt, H., andSchiebel, H.M. 1984. Cellular localization of quinolizidine alkaloids by laser desorption mass spectrometry (LAMMA 1000).Plant Cell Reports 3:230–233.

    Google Scholar 

  • Zacher, F. 1936. Beitrag zur Nährpflanzenkenntniss der Samenkäfer (Col. Bruch.-Lariidae).Mitt. Dtsch. Entomol. Ges. 7:10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szentesi, Á., Wink, M. Fate of quinolizidine alkaloids through three trophic levels:Laburnum anagyroides (Leguminosae) and associated organisms. J Chem Ecol 17, 1557–1573 (1991). https://doi.org/10.1007/BF00984688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984688

Key Words

Navigation