Skip to main content

Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action

  • Living reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Alkaloids are one of the largest groups of plant secondary metabolites, being present in several economically relevant plant families. Alkaloids encompass neuroactive molecules, such as caffeine and nicotine, as well as life-saving medicines including emetine used to fight oral intoxication and the antitumorals vincristine and vinblastine. Alkaloids can act as defense compounds in plants, being efficient against pathogens and predators due to their toxicity. Fast perception of aggressors and unfavorable environmental conditions, followed by efficient and specific signal transduction for triggering alkaloid accumulation, are key steps in successful plant protection. Toxic effects, in general, depend on specific dosage, exposure time, and individual characteristics, such as sensitivity, site of action, and developmental stage. At times, toxicity effects can be both harmful and beneficial depending on the ecological or pharmacological context. Different strategies are used to study alkaloid metabolism and accumulation. An efficient approach is to monitor gene expression, enzyme activities, and concentration of precursors and of the alkaloid itself during controlled attacks of pathogens and herbivores or upon the simulation of their presence through physical or chemical stimulation. Detailed understanding of alkaloid biosynthesis and mechanisms of action is essential to improve production of alkaloids of interest, to discover new bioactive molecules, and to sustainably exploit them against targets of interest, such as herbivores, pathogens, cancer cells, or unwanted physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahsan H, Reagan-Shaw S, Eggert DM, Tan TC, Afaq F, Mukhtar H, Ahmad N. Protective effect of sanguinarine on ultraviolet B-mediated damages in SKH-1 hairless mouse skin: implications for prevention of skin cancer. Photochem Photobiol. 2007;83:986–93.

    Article  CAS  PubMed  Google Scholar 

  • Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal. 2015;22:686–729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beaudoin GAW, Facchini PJ. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta. 2014;240:19–32.

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg A, Dell’Olivo A, Bshary R, Kuhlemeier C. The sweetest thing: advances in nectar research. Curr Opin Plant Biol. 2009;12:486–90.

    Article  PubMed  Google Scholar 

  • Casikar V, Mujica E, Mongelli M, Aliaga J, Lopez N, Smith C, Bartholomew F. Does chewing coca leaves influence physiology at high altitude? Ind J Clin Biochem. 2010;25:311–4.

    Article  CAS  Google Scholar 

  • Courdavault V, Papon N, Clastre M, Giglioli-Guivarc N, St-Pierre B, Burlat V. A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol. 2014;19:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R, editors. Biochemistry and molecular biology of plants. Rockville: American Society of Plant Physiologists; 2000.

    Google Scholar 

  • Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob. 2014;44:377–86.

    Article  CAS  Google Scholar 

  • Dewey RE, Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry. 2014;94:10–27.

    Article  Google Scholar 

  • Eisner T. For love of insects. Cambridge: Harvard University Press; 2003.

    Google Scholar 

  • Evans SR, Hofmann A. Planta de los dioses. Mexico: Fondo de Cultura Económica; 2006.

    Google Scholar 

  • Green BT, Lee ST, Panter KE, Brown DR. Piperidine alkaloids: human and food animal teratogens. Food Chem Toxicol. 2012;50:2049–55.

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol. 2013;54:647–72.

    Article  CAS  PubMed  Google Scholar 

  • Han MA, Woo SM, Min K-J, Kim S, Park J-W, Kim DE, Kim SH, Choi YH, Kwon TK. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. Chem-Biol Interact. 2015;228:69–78.

    Article  CAS  PubMed  Google Scholar 

  • Hantak MM, Grant T, Reinsch S, Mcginnity D, Loring M, Toyooka N, Saporito RA. Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol. 2013;39:1400–6.

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB. Introduction to ecological biochemistry. London: Elsevier Academic Press; 1993.

    Google Scholar 

  • Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry. 2007;68:2831–46.

    Article  CAS  PubMed  Google Scholar 

  • Irwin RE, Cook D, Richardson LL, Manson JS, Gardner DR. Secondary compounds in floral rewards of toxic rangeland plants: impacts on pollinators. J Agric Food Chem. 2014;62:7335–44.

    Article  CAS  PubMed  Google Scholar 

  • Kautz S, Trisel JA, Ballhorn DJ. Jasmonic acid enhances plant cyanogenesis and resistance to herbivory in Lima bean. J Chem Ecol. 2014;40:1186–96.

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan S, Lindsey T. Fatal caffeine overdose: two case reports. Forensic Sci Int. 2005;153:67–9.

    Article  CAS  PubMed  Google Scholar 

  • Koleva II, van Beek TA, Soffers AEMF, Dusemund B, Rietjens IMC. Alkaloids in the human food chain – natural occurrence and possible adverse effects. Mol Nutr Food Res. 2012;56:30–52.

    Article  CAS  PubMed  Google Scholar 

  • Laue P, Bährs H, Chakrabarti S, Steinberg CEW. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere. 2014;104:212–20.

    Article  CAS  PubMed  Google Scholar 

  • Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang CT. Cyclopamine: from cyclops lambs to cancer treatment. J Agric Food Chem. 2014;62:7355–62.

    Article  CAS  PubMed  Google Scholar 

  • Machowinski A, Krämer H, Hort W, Mayser P. Pityriacitrin – a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. Mycoses. 2006;49:388–92.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura HN, Fett-Neto AG. The major indole alkaloid N, β-d-glucopyranosyl vincosamide from leaves of Psychotria leiocarpa Cham. & Schltdl. is not an antifeedant but shows broad antioxidant activity. Nat Prod Res. 2013;27:402–11.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura HN, Rau MR, Fett-Neto AG. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications. Biotechnol Lett. 2014;36:191–200.

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goel MK, Srivastava V, Rahman LU. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett. 2015;37:253–63.

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.

    Article  PubMed  Google Scholar 

  • Mohsenikia M, Alizadeh AM, Khodayari S, Khodayari H, Aminkouhpayeh S, Karimi A, Zamani M, Azizian S, Mohagheghi MA. The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur J Pharmacol. 2013;718:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento NC, Fett-Neto AG. Plant secondary metabolism and challenges in modifying its operation: an overview. In: Fett-Neto AG, editor. Plant secondary metabolism: methods and applications, Methods in molecular biology series, vol. 643. New York: Humana Press; 2010.

    Google Scholar 

  • Okada K, Abe H, Arimura G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 2015;56:16–27.

    Article  PubMed  Google Scholar 

  • Paranhos JT, Fragoso V, Henriques AT, Ferreira AG, Fett-Neto AG. Regeneration of Psychotria umbellata and production of the analgesic indole alkaloid umbellatine. Tree Physiol. 2005;25:251–5.

    Article  CAS  PubMed  Google Scholar 

  • Pasquali G, Porto DD, Fett-Neto AG. Metabolic engineering of cell cultures versus whole-plant complexity in the production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng. 2006;101:287–96.

    Article  CAS  PubMed  Google Scholar 

  • Porto DD, Matsuura HN, Vargas LRB, Henriques AT, Fett-Neto AG. Shoot accumulation kinetics and effects on herbivores of the wound-induced antioxidant indole alkaloid brachycerine of Psychotria brachyceras. Nat Prod Commun. 2014;9:629–32.

    CAS  PubMed  Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AMK, Murata J, Ploss K, Boland W, DeLuca V. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci U S A. 2010;107:15287–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rostás M, Cripps MG, Silcock P. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia. 2015;177:487–97.

    Article  PubMed  Google Scholar 

  • Saporito RA, Donnelly MA, Spande TF, Garraffo HM. A review of chemical ecology in poison frogs. Chemoecology. 2012;22:159–68.

    Article  CAS  Google Scholar 

  • Senchina DS, Hallam JE, Kohut ML, Nguyen NA, Perera MAN. Alkaloids and athlete immune function: caffeine, theophylline, gingerol, ephedrine, and their congeners. Exerc Immunol Rev. 2014;20:68–93.

    PubMed  Google Scholar 

  • Shimshoni JA, Mulder P, Bouznach A, Edery N, Pasval I, Barel S, Khaliq MA, Perl S. Heliotropium europaeum poisoning in cattle and of its pyrrolizidine alkaloid profile. J Agric Food Chem. 2015;63:1664–72.

    Article  CAS  PubMed  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J. 2010;62:589–600.

    Article  CAS  PubMed  Google Scholar 

  • Vilariño MP, Ravetta DA. Tolerance to herbivory in lupin genotypes with different alkaloid concentration: interspecific differences between Lupinus albus L. and L. angustifolius L. Environ Exp Bot. 2008;63:130–6.

    Article  Google Scholar 

  • Wang X, Bennetzen JL. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol Genet Genomics. 2015;290:11–21.

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013;111:1021–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson CR, Sauer J, Hooser SB. Taxines: a review of the mechanism and toxicity of yew (Taxus spp.) alkaloids. Toxicon. 2001;39:175–85.

    Article  CAS  PubMed  Google Scholar 

  • Wink M, Twardowski T. Allelochemical properties of alkaloids: effects on plants, bacteria and protein biosynthesis. In: Rizvi SJH, Rizvi V, editors. Allelopathy: basic and applied aspects. London: Chapman & Hall; 1992.

    Google Scholar 

  • Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science. 2013;339:1202–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamashoji S, Matsuda T. Synergistic cytotoxicity induced by α-solanine and α-chaconine. Food Chem. 2013;141:669–74.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep. 2010;27:1469–79.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Kuča K, Dohnal V, Dohnalová L, Wu Q, Wu C. Military potential of biological toxins. J Appl Biomed. 2014;12:63–77.

    Article  Google Scholar 

Download references

Acknowledgments

This work was elaborated with the support of the Brazilian agencies: National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and Rio Grande do Sul State Foundation for Research Support (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Germano Fett-Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Matsuura, H.N., Fett-Neto, A.G. (2015). Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In: Gopalakrishnakone, P., Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6728-7_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6728-7_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6728-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics