Skip to main content
Log in

Sequestration of distasteful compounds by some pharmacophagous insects

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Several pharmacophagous insects have been shown to sequester specific kairomonal substances or their derivatives in their body tissues. Turnip sawflies,Athalia rosae, visit a plant,Clerodendron trichototmum (Verbenaceae), and feed voraciously on the leaf surface. Clerodendrins were characterized as the potent phagostimulants forA. rosae adults. The insect sequesters some of the analogs and becomes extremely bitter on its body surface. Some chrysomelid leaf beetles associated with cucurbitacins were found to store high concentrations of these bitter principles in their body. South American polyphagous beetles,Diabrotica speciosa andCerotoma arcuata, are strongly arrested by root components from the cucurbit plant,Ceratosanthes hilariana, and selectively accumulate 23,24-dihydrocucurbitacin D, effectively gaining bitterness. Similarly, four species of Asian pumpkin leaf beetles belonging to the genusAulacophora were shown to sequester the same compound in body tissue as the major bitter principle. Three phenylpropanoids closely related to methyl eugenol were found to accumulate in the rectal glands of the male Oriental fruit fly,Dacus dorsalis. One of the rectal gland components, 2-allyl-4,5-dimethoxyphenol was shown to be released in the air during courtship. In all of these cases, selectively sequestered compounds strongly deterred feeding by some predators, thus serving as allomones in this context. Kairomonal and pheromonal functions linked with allomonal sequestration by pharmacophagous feeding has also been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, M. 1988. A biosystematic study of the genusAthalia Leach of Japan (Hymenoptera: Tenthredinidae).Esakia 26:91–131.

    Google Scholar 

  • Belles, X., Camps, F., Coll, J., andPiulachs, M.D. 1985. Insect antifeedant activity of clerodane diterpenoids against larvae ofSpodoptera littoralis (Boisd) (Lepidoptera).J. Chem. Ecol. 11:1439–1445.

    Google Scholar 

  • Blaney, W.M., Simmonds, M.S.J., Ley, S.V., andJones, P.S. 1988. Insect antifeedants: A behavioral and electrophysiological investigation of natural and synthetically derived clerodane diterpenoids.Entomol. Exp. Appl. 46:267–274.

    Google Scholar 

  • Blum, M.S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies.Entomol, Exp. Appl. 24:64–77.

    Google Scholar 

  • Boppré, M. 1984. Redefining “pharmacophagy. ”J. Chem. Ecol. 10:1151–1154.

    Google Scholar 

  • Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (Pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.

    Google Scholar 

  • Boppré, M., Petty, R.L., Schneider, D., andMeinwald, J. 1978. Behaviorally meadiated contacts between scent organs: Another prerequisite for pheromone production inDanaus chrysippus males (Lepidoptera).J. Comp. Physiol. 126:97–103.

    Google Scholar 

  • Brower, L.P. 1969. Ecological chemistry.Sci. Am. 220:22–29.

    Google Scholar 

  • Chambers, D.L. 1977. Attractants for fruit fly survey and control, pp. 327–344, in H.H. Shorey and J.J. Mckelvey (eds.). Chemical Control of Insect Behavior. Wiley, New York.

    Google Scholar 

  • Chambliss, O.L., andJones, C.M. 1966a. Cucurbitacins: Specific insect attractants in cucurbitaceae.Science 153:1392–1393.

    Google Scholar 

  • Chambliss, O.L., andJones, C.M. 1966b. Chemical and genetic basis for insect resistance in cucurbits.Proc. Am. Soc. Hortic. Sci. 89:394–405.

    Google Scholar 

  • Conner, W.E., Eisner, T., Vander Meer, R.K., Guerrero, A., andMeinwald, J. 1981. Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): Role of a pheromone derived from dietary alkaloids.Behav. Ecol. Sociobiol. 9:227–235.

    Google Scholar 

  • DaCosta, C.P., andJones, C.M. 1971. Cucumber beetle resistance and mite susceptability controlled by the bitter gene inCucumis saliva L.Science 172:1145–1146.

    Google Scholar 

  • David, A., andVallance, D.K. 1955. Bitter principles of Cucurbitaceae.J. Pharm. Pharmacol. 7:295–296.

    Google Scholar 

  • Doskotch, R.W., andHufford, C.D. 1970. Hexanor-cucurbitacin D, a degraded cucurbitacin fromBegonia tuberhybrida var.alba. Can. J. Chem. 48:1787–1788.

    Google Scholar 

  • Duncan, G.R., Levi, D.D., andPyttel, R. 1968. Bitter principles of the cucurbitaceae:Bryonia dioica.Planta Med. 16:224–229.

    Google Scholar 

  • Ferguson, J.E., andMetcalf, R.L. 1985. Cucurbitacins: Plant derived defense compounds for diabroticites (Coleoptera: Chrysomelidae).J. Chem. Ecol. 11:311–318.

    Google Scholar 

  • Ferguson, J.E., Metcalf, R.L., andFisher, D.C. 1985. Disposition and fate of cucurbitacin B in five species of diabroticites.J. Chem. Ecol. 11:1307–1321.

    Google Scholar 

  • Fletcher, B.S., Bateman M.A., Hart, N.K., andLamberton J.A. 1975. Identification of a fruit fly attractant in Australian plant,Zieria smithii, asO-methyl eugenol.J. Econ. Entomol. 68:815–816.

    Google Scholar 

  • Geuskens, R.B.M., Luteijin, J.M., andSchoonhoven, L.M. 1983. Antifeedant activity of some ajugarin derivatives in three lepidopterous species.Experientia 39:403–404.

    Google Scholar 

  • Gould, F., andMassay, A. 1984. cucurbitacins and predation of the spotted cucumber beetle,Diabrotica undecimpunctata howardi.Entomol. Exp. Appl. 36:273–278.

    Google Scholar 

  • Hernández, A., Pascual, C., Sanz, J., andRodríguez, B. 1982. Diterpenoids fropmAjuga chamaepitys: Two Neo-clerodane derivatives.Phytochemistry 21:2909–2911.

    Google Scholar 

  • Kato, N., Shibayama, S., andMunakata, K. 1971. Structure of the diterpene clerodendrin A.J. Chem. Soc. Chem. Commun. 1971:1632–1633.

    Google Scholar 

  • Kato, N., Takahashi, M., Shibayama, S., andMunakata, K. 1972. Antifeeding active substances for insects inClerodendron trichotomum Thumb. Agric. Biol. Chem. 36:2579–2582.

    Google Scholar 

  • Kawano, Y., Mitchell, W.C., andMatsumoto, H. 1968. Identification of male Oriental fruit fly attractant in the golden shower blossom.J. Econ. Entomol. 61:986–988.

    Google Scholar 

  • Kitano, H. 1988. Experimental studies on the mating behavior ofAthalia lugens infumata.Kontyu 56:180–188.

    Google Scholar 

  • Kobayashi, R.M., Ohinata, K., Chambers, D.L., andFujimoto, M.S. 1978. Sex pheromones of the Oriental fruit fly and the melon fly: Mating behavior, bioassay method, and attraction of females by live males and by suspected pheromone glands of males.Environ. Entomol. 7:107–112.

    Google Scholar 

  • Kubo, Lee, Y.W., Bologh-Noir, V., Nakanishi, K., andChapya, A. 1976. Structure of ajugarins.J. Chem. Soc. Chem. Commun. 1976:949–950.

    Google Scholar 

  • Lavie, D., andGlotter, E. 1971. The cucurbitacins, a group of tetracyclic triterpens.Fortschr. Chem. Org. Naturst. 29:307–362.

    Google Scholar 

  • Meinwald, J., Meinwald, Y.C., andMazzocchi, P.H. 1969. Sex pheromone of Queen butterfly: Chemistry.Science 164:1174–1175.

    Google Scholar 

  • Metcalf, R.L. 1979. Plants, chemicals, and insects: Some aspects of coevolution.Bull. Entomol. Soc. Am. 25:30–35.

    Google Scholar 

  • Metcalf, R.L. 1986. Coevolutionary adaptations of rootworm beetles (Coleoptera. Chrysomelidae) to cucurbitacins.J. Chem. Ecol. 12:1109–1124.

    Google Scholar 

  • Metcalf, R.L., Rhodes, A.M., Metcalf, R.A., Ferguson, J., Metcalf, E.R., andLu, P.Y. 1982. Cucurbitacin contents and diabroticite (Coleoptera: Chrysomelidae) feeding uponCucurbita spp.Environ. Entomol. 11:931–937.

    Google Scholar 

  • Nielson, J.K., Larsen, M., andSorenson, H.J. 1977. Cucurbitacins E and I inIbelis amara, feeding inhibitor forPhyllotreta nemorum.Phytochemistry 16:1519–1522.

    Google Scholar 

  • Nishida, R., Fukami, H., Baker, T.C., Roelofs, W.L., andAgree, T.E. 1985. Oriental fruit moth pheromone: Attraction of females by an herbal essence, pp 47–63,in T.E. Acree, and D.M. Soderlund (eds.). Semiochemistry: Flavor and Pheromones. Walter de Gruyter, Berlin.

    Google Scholar 

  • Nishida, R., Fukami, H., Tanaka, Y., Magalhāes, B.P., Yokoyama, M., andBlumenschein, A. 1986. Isolation of feeding stimulants of Brazilian leaf beetles (Dibrotica speciosa andCerotoma arcuata) from the root ofCeratosanthes hilariana.Agric. Biol. Chem. 50:2831–2836.

    Google Scholar 

  • Nishida, R., Tan, K.H., Serit, M., Lajis, N.H., Sukari, A.M., Takahashi, S., andFukami, H. 1988a. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly,Dacus dorsalis.Experientia 44:534–536.

    Google Scholar 

  • Nishida, R., Tan, K.H., andFukami, H. 1988b.Cis-3,4-Dimethoxycinnamyl alcohol from the rectal glands of male Oriental fruit fly,Dacus dorsalis.Chem. Express 3:207–210.

    Google Scholar 

  • Nishida, R.,Yokoyama, M., andFukami, H. 1990. Sequestration of cucurbitacins by the New and Old World chrysomelid beetles. In preparation.

  • Nishida, R., Fukami, H., Miyata, T., andTakeda, M. 1989. Clerodendrins: Feeding stimulants of the adult turnip sawfly,Athalia rosae ruficornis, fromClerodendron trhciotomum (Verbenaceae).Agric. Biol. Chem. 53:1641–1645.

    Google Scholar 

  • Ohinata, K., Jacobson, M., Kobayashi, R.M., Chambers, D.L., Fujimoto, M.S., andHiga, H.H. 1982. Oriental fruit fly and melon fly: Biological and chemical studies of smoke production by males.J. Environ. Sci. Health A17:197–216.

    Google Scholar 

  • Schneider, D., Boppré, M., Zweig, J., Horsley, S.B., Bell, T.W., Meinwald, J., Hansen, K., andDiehl, E.W. 1982. Scent organ development inCreatonotos moth: Regulation by pyrrolizidin alkaloids.Science 215:1264–1265.

    Google Scholar 

  • Shah, A.H., andPatel, R.C. 1975. Role of Tulsi plant (Ocimum sanctum) in control of mango fruit fly,Dacus correctes Bezzi (Tephritidae: Diptera).Curr. Sci. 45:313–314.

    Google Scholar 

  • Sillén-Tullberg, B. 1988. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis.Evolution 42:293–305.

    Google Scholar 

  • Sinha, A.K., andKrishna, S.S. 1969. Feeding ofAulacophora foveicollis on cucurbitacin.J. Econ. Entomol. 62:512–513.

    Google Scholar 

  • Sinha, A.K., andKrishna, S.S. 1970. Further studies on the feeding behavior ofAulacophora foveicollis on cucurbitacin.J. Econ. Entomol. 63:333–334.

    Google Scholar 

  • Steiner, L.F., Mitchell, W.C., Harris, E.J., Kozuma, T.T., andFujimoto, M.S. 1965. Oriental fruit fly eradication by male annihilation.J. Econ. Entomol. 58:961–964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, R., Fukami, H. Sequestration of distasteful compounds by some pharmacophagous insects. J Chem Ecol 16, 151–164 (1990). https://doi.org/10.1007/BF01021276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021276

Key Words

Navigation