Skip to main content
Log in

Stereochemical inversion of pyrrolizidine alkaloids byMechanitis polymnia (Lepidoptera: Nymphalidae: Ithomiinae): Specificity and evolutionary significance

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pyrrolizidine alkaloids (PAs), acquired by adults or larvae of Danainae and Ithomiinae butterflies and Arctiidae moths from plants, protect these lepidopterans against predators and are biosynthetic precursors of male sex pheromones. The investigation of PAs in many species of wild-caught adults of Ithomiinae showed lycopsamine (1) [(7R)-OH, (2′S)-OH, (3′S)-OH] as the main alkaloid. In incorporation experiments, PA-free (freshly emerged) adults of the ithomiineMechanitis polymnia were fed seven PAs: lycopsamine and four of its known natural stereoisomers—indicine (2) [(7R)-OH, (2′R)-OH, (3′S)-OH], intermedine (3) [(7R)-OH, (2′S)-OH, (3′R)-OH], rinderine (4) [(7S)-OH, (2′S)-OH, (3′R)-OH], and echinatine (5) [(7S)-OH, (2′S)-OH, (3′S)-OH], and two PAs without the 7-OH: supinine (6) [(2′S)-OH, (3′R)-OH] and amabiline (7) [(2′S)-OH, (3′S)-OH]. Males epimerized PAs 3, 4, and 5 mainly to lycopsamine (1). Females fed these same three PAs changed a smaller proportion to lycopsamine; their lesser capacity to modify PAs corresponds to their normal acquisition of already transformed PAs from males during mating rather than through visits of adults to plant sources of PAs. The alkaloids1 and2, both 7R and 3′S, were incorporated without or with minimum change by males and females. Feeding experiments with6 and7 (males only) showed an inversion at the 3′ center of6 and no change in7. The inversion from 7S to 7R (probably via oxyreduction) may be closely related to the evolution of acquisition of PAs by butterflies and moths. Two hypotheses are discussed: (1) The ancestral butterflies are probably adapted to tolerate, assimilate, and use (7R)-PAs (most common in plants; all widespread 1,2-unsaturated macrocyclic PA diesters show this configuration). The development of (7R)-PA receptors in the butterflies could lead to a specialization on this configuration in two ways: to help find PA plants and to utilize these components in sexual chemical communication. A later appearance of (7S)-PAs in plants could have selected an enzymatic system for the inversion of this chiral center in order to continue producing (7R)-PA-derived pheromones. (2) The inversion would be due to the evolution of a enzyme system specialized in the transport of (7R)-PAs to the integument; the failure of this system to carry (7S)-PAs led to an enzymatic system to invert them to transportable (7R)-PAs. In this case, the 7R configuration is an effect and not a cause of (7R)-PA-derived pheromones. In both hypotheses, the partial inversion of the 3′-asymmetric center, when the butterfly was fed intermedine (3), rinderine (4), and supinine (6), could be fortuitous due to the conformation of the molecule and/or the enzymatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, T.W., andMeinwald, J. 1986. Pheromones of two arctiid moths (Creatonotos transiens andC. gangis): Chiral components from both sexes and achiral female components.J. Chem. Ecol. 12:385–409.

    Article  Google Scholar 

  • Bell, T.W., Boppré, M., Schneider, D., andMeinwald, J. 1984. Stereochemical course of pheromone biosynthesis in the arctiid moth,Creatonotos transiens.Experientia 40:713–714.

    Article  PubMed  Google Scholar 

  • Biller, A., Boppré, M., Witte, L., andHartmann, T. 1994. Pyrrolizidine alkaloids inChromolaena odorata: Chemical and chemoecology aspects.Phytochemistry 35:615–619.

    Article  Google Scholar 

  • Bogner, F., andBoppré, M. 1989. Single cell recordings reveal hydroxydanaidal as the volatile compound attracting insects to pyrrolizidine alkaloids.Entomol. Exp. Appl. 50:171–184.

    Article  Google Scholar 

  • Boppré, M. 1978. Chemical communication, plant relationships and mimicry in the evolution of danaid butterflies.Entomol. Exp. Appl. 24:264–277.

    Google Scholar 

  • Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.

    Article  Google Scholar 

  • Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology.J. Chem. Ecol. 16:165–185.

    Article  Google Scholar 

  • Bremer, K., Jansen, R.K., Karis, P.O., KÄllersjö, M., Keeley, S.C., Kim, K.J., Michaels, H.J., Palmer, J.D., andWallace, R.S. 1992. A review of the phylogeny and classification of the Asteraceae.Nord. J. Bot. 12:141–148.

    Google Scholar 

  • Brown, K.S. 1984. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator.Nature 307:707–709.

    Article  Google Scholar 

  • Brown, K.S. 1985. Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae).Rev. Bras. Biol. 44:435–460.

    Google Scholar 

  • Brown, K.S. 1987. Chemistry at the Solanaceae/lthomiinae interface.Ann. M. Bot. Gard. 74:359–397.

    Google Scholar 

  • Coimbra-Filho, A.F. 1981. Animais predados ou rejeitados pelo Saui-Piranga,Leontopithecus r. rosalia (L., 1766) na sua area de ocorrÊncia primitiva (Callitrichidae: Primates).Rev. Bras. Biol. 41:717–731.

    Google Scholar 

  • Conner, W.E., Eisner, T., Vander Meer, R.K., Guerrero, A., andMeinwald, J. 1981. Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids.Behav. Ecol. Sociobiol. 9:227–235.

    Article  Google Scholar 

  • Culvenor, C.C.J. 1978. Pyrrolizidine alkaloids—occurrence and systematic importance in angiosperms.Bot. Notiser 131:473–486.

    Google Scholar 

  • Dussourd, D.E., Ubik, K., Harvis, C., Resch, J., Meinwald, J., andEisner, T. 1988. Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix.Proc. Natl. Acad. Sci. U.S.A. 85:5992–5996.

    PubMed  Google Scholar 

  • Edgar, J.A. 1975. Danainae (Lep.) and 1,2-dehydropyrrolizidine alkaloid-containing plants-with reference to observations made in the New Hebrides.Phil. Trans. R. Soc. Lond. B. 272:467–476.

    Google Scholar 

  • Edgar, J.A. 1982. Pyrrolizidine alkaloids sequestered by Solomon Island danainae butterflies. The feeding preferences of the Danainae and Ithomiinae.J. Zool. Lond. 196:385–399.

    Google Scholar 

  • Edgar, J.A. 1984. Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae, pp. 91–96,in P.A. Ackery, and R.I. Vane-Wright (eds.). The Biology of Butterflies. Academic Press, London.

    Google Scholar 

  • Edgar, J.A., Culvenor, C.C.J., andSmith, L.W. 1971. Dihydropyrrolizine derivatives in the “hair-pencil” secretions of danaid butterflies.Experientia 27:761–762.

    Google Scholar 

  • Edgar, J.A., Culvenor, C.C.J., andRobinson, G.S. 1973. Hairpencil dihydropyrrolizidines of Danainae the New Hebrides.J. Aust. Entomol. Soc., 12:144–150.

    Google Scholar 

  • Edgar, J.A., Culvenor, C.C.J., andPliske, T.E. 1974. Coevolution of danaid butterflies with their host plants.Nature 250:646–648.

    Article  PubMed  Google Scholar 

  • Edgar, J.A., Culvenor, C.C.J., andPliske, T.E. 1976. Isolation of a lactone structurally related to the esterifying acids of pyrrolizidine alkaloids from the costal fringes of male Ithomiinae.J. Chem. Ecol. 2:263–270.

    Article  Google Scholar 

  • Edgar, J.A., Boppré, M., andSchneider, D. 1979. Pyrrolizidine alkaloid storage in African and Australian Danaid butterflies.Experientia 35:1447–1448.

    Article  Google Scholar 

  • Eisner, T. 1982. For love of nature: exploration and discovery at biological field stations.Bioscience 32:321–326.

    Google Scholar 

  • Eisner, T., andEisner, M. 1991. Unpalatability of the pyrrolizidine alkaloid-containing mothUtetheisa ornatrix, and its larva, to wolf spiders.Psyche 98:111–118.

    Google Scholar 

  • Kelley, R.B., Seiber, J.N., Jones, A.D., Segall, H.J., andBrower, L.P. 1987. Pyrrolizidine alkaloids in overwintering monarch butterflies (Danaus plexippus) from Mexico.Experientia 43:943–946.

    Article  Google Scholar 

  • Krasnoff, S.B., andDussourd, D.E. 1989. Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids.J. Chem. Ecol. 15:47–60.

    Article  Google Scholar 

  • L'Empereur, K.M., Li, Y., andStermitz, F.R. 1989. Pyrrolizidine alkaloids fromHackelia californica andGnophaela latipennis, anH. californica-hosted arctiid moth.J. Nat. Prod. 52:360–366.

    Article  Google Scholar 

  • Mackay, M.F., andCulvenor, C.C.J. 1982. Structure of Senecionine, pyrrolizidine alkaloid.Acta Cryst. B38:2574–2578.

    Google Scholar 

  • Mackay, M.F., Sadek, M., andCulvenor, C.C.J. 1983. Lycopsamine and intermedine, C15H25NO5: Diastereoisomeric pyrrolizidine alkaloids.Acta Cryst. C39:785–788.

    Google Scholar 

  • Masters, A.R. 1990. Pyrrolizidine alkaloids in artificial nectar protect adult ithomiine butterflies from spider predator.Biotropica 22:298–304.

    Google Scholar 

  • Masters, A.R. 1992. Chemical defense in Ithomiinae butterflies (Nymphalidae: Ithomiinae). PhD thesis. University of Florida, Gainesville, Florida.

    Google Scholar 

  • Mattocks, A.R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press, New York.

    Google Scholar 

  • Nishida, R., Kim, C., Fukami, H., andIrie, R. 1991. Ideamine N-oxides: Pyrrolizidine alkaloids sequestered by the Danaine butterfly.Idea leuconoe. Agric. Biol. Chem. 55:1787–1792.

    Google Scholar 

  • Pasteels, J.M., Duffey, S., andRowell-Rahier, M. 1990. Toxins in chrysomelid beetles. Possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals.J. Chem. Ecol. 16:211–222.

    Article  Google Scholar 

  • Pliske, T.E. 1975a. Pollination of pyrrolizidine alkaloid containing plants by male Lepidoptera.Environ. Entomol. 4:474–479.

    Google Scholar 

  • Pliske, T.E. 1975b. Attraction of Lepidoptera to plants containing pyrrolizidine alkaloids.Environ. Entomol. 4:455–473.

    Google Scholar 

  • Rizk, A.F.M. 1991. The pyrrolizidine alkaloids: Plant sources and properties, pp. 1–90, in A.F.M. Rizk (ed.). Naturally Occurring Pyrrolizidine Alkaloids. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Rothschild, M., andEdgar, J.A. 1978. Pyrrolizidine alkaloids fromSenecio vulgaris sequestered and stored byDanaus plexippus.J. Zool. London 186:347–349.

    Google Scholar 

  • Rowell-Rahier, M., Witte, L., Ehmke, A., Hartmann, T., andPasteels, J.M. 1991. Sequestration of plant pyrrolizidine alkaloids by chrysomelid beetles and selective transfer into the defensive secretions.Chemoecology 2:41–48.

    Article  Google Scholar 

  • Schneider, D., Boppré, M., Schneider, H., Thompson, W.R., Boriack, C.J., Petty, R.L., andMeinwald, J. 1975. A pheromone precursor and its uptake in maleDanaus butterflies.J. Comp. Physiol. 97:245–256.

    Article  Google Scholar 

  • Schulz, S. 1987. Die Chemie Duftorgane mÄnnlicher Lepidopteren. Doctoral thesis. Institut für Organische Chemie, UniversitÄt Hamburg, Hamburg, Germany.

    Google Scholar 

  • Schulz, S. 1992. Absolute configuration and synthesis of 2-hydroxy-2-(1-hydroxyethyl)-3-methyl-γ-butyrolactone, a presumed pheromone of ithomiine butterflies.Liebigs Ann. Chem. 1992:829–834.

    Google Scholar 

  • Schulz, S., Francke, W., Edgar, J., andSchneider, D. 1988. Volatile compounds from androconial organs of danaine and ithomiine butterflies.Z. Naturforsch 43c:99–104.

    Google Scholar 

  • Schulz, S., Francke, W., Boppré, M., Eisner, T., andMeinwald, J. 1993. Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors inCreatonotos transiens (Lepidoptera, Arctiidae).Proc. Natl. Acad. Sci. U.S.A. 90:6834–6838.

    PubMed  Google Scholar 

  • Stelljes, M.E., andSeiber, J.N. 1990. Pyrrolizidine alkaloids in an overwintering population of monarch butterflies (Danaus plexippus) in California.J. Chem. Ecol. 16:1459–1470.

    Article  Google Scholar 

  • Trigo, J.R. 1993. Alcalóides pirrolizidínicos em borboletas Ithomiinae. Alguns aspectos em ecologia química. Doctoral thesis. Instituto de Química, UNICAMP, Campinas, SP, Brazil.

    Google Scholar 

  • Trigo, J.R., andBrown, K.S. 1990. Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae.Chemocecology 1:22–29.

    Article  Google Scholar 

  • Trigo, J.R., andMotta, P.C. 1990. Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae).Experientia 46:332–334.

    Article  Google Scholar 

  • Trigo, J.R., Witte, L., Brown, K.S., Hartmann, T., andBarata, L.E.S. 1993. Pyrrolizidine alkaloids in the arctiid mothHyalurga syma.J. Chem. Ecol. 19:669–679.

    Article  Google Scholar 

  • Wink, M., Schneider, D., andWitte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth,Creatonotos transiens: Stereochemical conversion of heliotrine.Z. Naturforsch 43c:737–741.

    Google Scholar 

  • Witte, L., Rubiolo, P., Bicchi, C., andHartmann, T. 1993. Comparative analysis of pyrrolizidine alkaloids from natural sources by gas chromatography-mass spectrometry.Phytochemisiry 32:187–196.

    Article  Google Scholar 

  • Wodak, S.J. 1975. The crystal structure of heliotrine: A pyrrolizidine alkaloid monoester.Acta Cryst. B 31:569–573.

    Article  Google Scholar 

  • Wunderer, H., Hansen, K., Bell, T.W., Schneider, D., andMeinwald, J. 1986. Sex pheromones of two Asian moths (Creatonotos transiens, C. gangis; Lepidoptera—Arctiidae): Behavior, morphology, chemistry and electrophysiology.Exp. Biol. 46:11–27.

    PubMed  Google Scholar 

  • Zikan-Cardoso, M. 1991. Defesa química por alcalóides pirrolizidínicos (PAs) em Lepidoptera: testes corn um predador vertebrado. Master's thesis. Instituto de Biologia, UNICAMP, Campinas, SP, Brazil.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of the doctoral thesis of J.R.T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trigo, J.R., Barata, L.E.S. & Brown, K.S. Stereochemical inversion of pyrrolizidine alkaloids byMechanitis polymnia (Lepidoptera: Nymphalidae: Ithomiinae): Specificity and evolutionary significance. J Chem Ecol 20, 2883–2899 (1994). https://doi.org/10.1007/BF02098396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098396

Key words

Navigation