Skip to main content

Advertisement

Log in

De novo Synthesis vs. Sequestration: Negatively Correlated Metabolic Traits and the Evolution of Host Plant Specialization in Cyanogenic Butterflies

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae of Heliconius butterflies (Nymphalidae: Heliconiinae) feed exclusively on cyanogenic leaves of Passiflora (passion vine). Most Heliconius manufacture cyanogenic glycosides (cyanogens) and some species sequester cyanogens from host plants. We compare ability to sequester simple monoglycoside cyclopentenyl (SMC) cyanogens and manufacture aliphatic cyanogens in 12 Heliconius species, including larvae that are specialized (single host species) and generalized (many host species). All butterflies tested higher for cyanide concentrations when reared on plants that larvae can sequester from (SMC plants) than when reared on plants that larvae do not sequester from (non-SMC plants). Specialists in the sara–sapho clade sequestered SMC cyanogens from specific host plants at seven times that of Passiflora generalists fed the same hosts. In contrast, sara–sapho clade species reared on non-SMC plants had significantly lower cyanide concentrations from de novo synthesis than generalists fed the same plants. Furthermore, cyanogen analyses indicated that Heliconius sara butterflies reared on an SMC host had a greater proportion of sequestered SMC cyanogens (95.0%) than de novo-synthesized aliphatic cyanogens (5.0%). Thus, sequestration and de novo synthesis are negatively correlated traits. Results suggest that losing the ability to synthesize cyanogens has restricted sara–sapho clade species to specific hosts containing SMC cyanogens and explains dietary restriction in this clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler, L. S., Schmitt, J. A., and Bowers, M. D. 1994. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85.

    Article  Google Scholar 

  • Ballabeni, P., Gotthard, K., and Kayumba, A. 2003. Local adaptation and ecological genetics of host-plant specialization in a leaf beetle. Oikos 101:70–8.

    Article  Google Scholar 

  • Beccaloni, G. W. and Symons, F. B. 2000. Variation of butterfly diet breadth in relation to host-plant predictability: results from two faunas. Oikos 90:50–66.

    Article  Google Scholar 

  • Benson, W. W., Brown, K. S., and Gilbert, L. E. 1976. Coevolution of plants and herbivores: Passion flower butterflies. Evolution 29:659–680.

    Article  Google Scholar 

  • Bernays, E. A. 1988. Host specificity in phytophagous insects: Selection pressure from generalist predators. Entomol. Exp. Appl. 49:131–140.

    Article  Google Scholar 

  • Bernays, E. A. 1989. Host range in phytophagous insects: The potential role of generalist predators. Evol. Ecol. 3:299–311.

    Article  Google Scholar 

  • Bernays, E. A. and Chapman, R. F. 1994. in T. A. Miller and H. S. van Emden (eds.). Host-Plant Selection by Phytophagous Insects. Chapman & Hall, NY.

    Google Scholar 

  • Bernays, E. A. and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892.

    Article  Google Scholar 

  • Bowers, M. D. 1988. Plant allelochemistry and mimicry, pp. 273–311, in P. Barbosa and D. Letourneau (eds.). Novel Aspects of Insect–Plant Interactions. Wiley and Sons, New York.

    Google Scholar 

  • Bowers, M. D. 1990. Recycling plant natural products for insect defenses, in D. L. Evans and J. D. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. SUNY Albany Press, New York.

    Google Scholar 

  • Bowers, M. D. 1992. The evolution of unpalatability and the cost of chemical defense in insects, pp. 216–244, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An evolutionary approach. Chapman & Hall, NY.

    Google Scholar 

  • Bowers, M. D. and Collinge S. K. 1992. Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 18:817–831.

    Article  CAS  Google Scholar 

  • Brinker, A. M. and Seigler, D. S. 1989. Methods for the detection and quantitative determination of cyanide in plant materials. Phytochem. Bull. 21:24–31.

    Google Scholar 

  • Brower, A. V. Z. and Egan, M. 1997. Cladistic analysis of Heliconius butterflies and relatives (Nymphalidae: Heliconiiti): a revised phylogenetic position for Euides based on sequence from mtDNA and a nuclear gene. Proc. R. Soc. Lond., B Biol. Sci. 264:969–977.

    Article  CAS  Google Scholar 

  • Brown, K. S. Jr. 1981. The biology of Heliconius and related genera. Annu. Rev. Entomol. 26:427–456.

    Article  Google Scholar 

  • Brown, K. S. Jr., Trigo, J. R., Francini, R. B., Barros De Morais, A. B., and Motta, P. C. 1991. Aposematic insects on toxic host plants: Coevolution, colonization, and chemical emancipation, pp. 375–403, in P. W. Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson (eds.). Plant-animal interactions: Evolutionary ecology in tropical and temperate regions. Wiley and Sons, NY.

    Google Scholar 

  • Camara, M. D. 1997. Physiological mechanisms underlying the costs of chemical defense in Junonia coenia Hubner (Nymphalidae): A gravimetric and quantitative genetic analysis. Evol. Ecol. 11:451–469.

    Article  Google Scholar 

  • Cates, R. G. 1980. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: the effect of resource abundance and plant chemistry. Oecologia 46:22–31.

    Article  Google Scholar 

  • Cohen, J. A. 1985. Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications. J. Chem. Ecol. 11:85–103.

    Article  CAS  Google Scholar 

  • Cornell, H. V. and Hawkins, B. A. 2003. Herbivore responses to plant secondary compounds: A test of phytochemical coevolution theory. Am. Nat. 161:507–522.

    Article  PubMed  Google Scholar 

  • Denno, R. F., McClure, M. S., and Ott, J. R. T. 1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu. Rev. Entomol. 40:297–231.

    Article  Google Scholar 

  • Duffey, S. S. 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 25:447–477.

    Article  CAS  Google Scholar 

  • Dyer, L. A. 1995. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496.

    Article  Google Scholar 

  • Ehrlich, P. R. and Raven, P. H. 1964. Butterflies and plants: A study in coevolution. Evolution 8:586–608.

    Article  Google Scholar 

  • Engler, H. 1998. Chemical ecology of passion vine butterflies: Sequestration of cyanogens and patterns of host-plant specialization by Heliconius butterflies. Ph.D. Dissertation. The University of Texas at Austin.

  • Engler, H. S., Spencer, K. C., and Gilbert, L. E. 2000. Preventing cyanide release from leaves. Nature 406:144–145.

    Article  PubMed  CAS  Google Scholar 

  • Feeny, P. P. 1975. Biochemical coevolution between plants and their insect herbivores, pp. 3–19, in L. E. Gilbert and P. H. Raven (eds.). Coevolution of Animals and Plants. University of Texas Press, Austin.

    Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15.

    Article  Google Scholar 

  • Freitas, A. V. L., Trigo, J. R., Brown, K. S. Jr., Witte, L., Hartmann, T., Barata, L. E. S. 1996. Tropane and pyrrolizidine alkaloids in the ithomiines Placidula euryanassa and Miraleria cymothoe (Lepidoptera: Nymphalidae. Chemoecology 7:61–67.

    Article  CAS  Google Scholar 

  • Fry, J. D. 1996. The evolution of host specialization: Are trade-offs overrated? Am. Nat. 148:S84–S107.

    Article  Google Scholar 

  • Fry, J. D. 2003. Detecting ecological tradeoffs using selection experiments. Ecology 84:1672–1678.

    Article  Google Scholar 

  • Futuyma, D. J. 1983. Evolutionary interactions among herbivorous insects and plants, pp. 207–231, in D. J. Futuyma and M. Slatkin (eds.). Coevolution. Sinauer Associates, Massachusetts.

    Google Scholar 

  • Futuyma, D. J. and Phillipi, T. E. 1987. Genetic variation and covariation in responses to host plants by Alisophila potemaria (Lepidoptera: Geometridae). Evolution 41:269–279.

    Article  Google Scholar 

  • Garland, T., Dickerman, A. W., Janis, C. M., and Jones, J. A. 1993. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42:265–292.

    Article  Google Scholar 

  • Gilbert, L. E. 1971. Butterfly–plant coevolution: Has Passiflora adenapoda won the selectional race with Heliconiine butterflies? Science 172:585–586.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, L. E. 1972. Pollen feeding and reproductive biology of Heliconius butterflies. Proc. Natl. Acad. Sci. USA 69:1402–1407.

    Article  Google Scholar 

  • Gilbert, L. E. 1979. Development of theory in the analysis of insect–plant interactions, pp. 117–154, in D. Horn, R. Mitchell, and G. Stairs (eds.). Ohio State University Press, Columbus.

  • Gilbert, L. E. 1982. The coevolution of a butterfly and a vine. Sci. Am. 247:110–121.

    Article  Google Scholar 

  • Gilbert, L. E. 1991. Biodiversity of Central American Heliconius community: Pattern, process, and problems, pp. 403–427, in P. W. Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson (eds.). Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley-Interscience, New York.

    Google Scholar 

  • Gilbert, L. E. 2003. Adaptive novelty through introgression in Heliconius wing patterns: Evidence for shared genetic “tool box” from synthetic hybrid zones, pp. 281–318, in C. L. Boggs, W. B. Watt, and P. R. Ehrlich (eds.). Ecology and Evolution Taking Flight: Butterflies as Model Systems. University of Chicago Press, Illinois.

    Google Scholar 

  • Gilbert, L. E. and Singer, M. C. 1975. Butterfly ecology. Ann. Rev. Ecolog. Syst. 6:365–397.

    Article  Google Scholar 

  • Gotthard, K., Margraf, N., Rasmann, S., and Rahier, M. 2005. The evolution of larval foraging behaviour in response to host plant variation in a leaf beetle. Oikos 109:503.

    Article  Google Scholar 

  • Grafen, A. 1989. The phylogenetic regression. Philos. Trans. R. Soc. B 326:119–157.

    Article  CAS  Google Scholar 

  • Gratton, C. and Welter, S. C. 1999. Does “enemy-free space” exist? Experimental host shifts of an herbivorous fly. Ecology 80:773–785.

    Google Scholar 

  • Hansen, K. 2004. Systematics of Passiflora. Ph.D. Dissertation. The University of Texas at Austin.

  • Hare, J. G. and Kennedy, G. G. 1986. Genetic variation in plant–insect associations: Survival of Lepinotarsa decemlineata populations on Soanum carolinense. Evolution 40:1031–1043.

    Article  Google Scholar 

  • Harvey, P. H. and Pagel, M. D. 1991. The comparative method in evolutionary biology, in R. M. May and P. H. Harvey (eds.). Oxford University Press, Oxford, UK.

  • Irschick, D., Dyer, L., and Sherry, T. W. 2005. Phylogenetic methodologies for studying specialization. Oikos 110:404.

    Article  Google Scholar 

  • Jaenike, J. 1990. Host specialization in phytophagous insects. Ann. Rev. Ecolog. Syst. 21:243–273.

    Article  Google Scholar 

  • Jaroszewski, J. W., Anderson, J. V., and Billeskov, I. 1987. Plants as a source of chiral cyclopentenes: taraktophyllin and epivolkenin, new cyclopentenoid cyanohydrin glucosides from Flacourticeae. Tetrahedron 43:2349–2354.

    Article  CAS  Google Scholar 

  • Joshi, A. and Thompson, J. N. 1995. Trade-offs and the evolution of host specialization. Evol. Ecol. 9:82–92.

    Article  Google Scholar 

  • Kapan, D. 2001. Three-butterfly system provides a filed test of Mullerian mimicry. Nature 409:338–340.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R. and Agrawal, A. A. 2002. Herbivore offense. Ann. Rev. Ecolog. Syst. 33:641–664.

    Article  Google Scholar 

  • Kearsley, M. J. C. and Whitham, T. G. 1992. Guns and butter: a no cost defense against predation for Chrysomela confluens. Oecologia 92:556–562.

    Article  Google Scholar 

  • Killip, E. P. 1938. The American species of Passifloraceae. Field Museum Nat. Hist. Bot. Ser. 19:1–613.

    Google Scholar 

  • Lambert, J. L., Ramasamy, J., and Paukstelis, J. V. 1975. Stable reagents for the colorimetric determination of cyanide by modified Konig reactions. Anal. Chem. 47:916–918.

    Article  CAS  Google Scholar 

  • Lill, J. T., Marquis, R. J., and Ricklefs, R. E. 2002. Host plants influence parasitism of forest caterpillars. Nature 417:170–173.

    Article  PubMed  CAS  Google Scholar 

  • MacDougal, J. M. and Feuillet, C. 2004. Systematics, pp. 27–31, in T. Ulmer and J. M. MacDougal (eds.). Passiflora: Passionflowers of the World. Timber Press, Portland, Oregon.

    Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1981. The occurrence of the cyanoglucosides, linamarin and lotaustralin, in Acraea and Heliconius butterflies. Comp. Biochem. Physiol. 68B:575–577.

    CAS  Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 75B:65–73.

    CAS  Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 4:745–749.

    Google Scholar 

  • Nishida, R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47:57–92.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, D. M., Boggs, C. L., and Fogel, M. L. 2003. Pollen feeding in the butterfly Heliconius charitonia: Isotopic evidence for essential amino acid transfer from pollen to eggs. Proc. R. Soc. Lond., B 27:2631–2636.

    Article  CAS  Google Scholar 

  • Olafsdottir, E. S., Andersen, J. V., and Jaroszewski, W. 1989. Cyanohydrin glycosides of Passifloraceae. Phytochemistry 28:127–132.

    Article  CAS  Google Scholar 

  • Penz, C. M. 1999. Higher level phylogeny for the passion-vine butterflies (Nymphalidae, Heliconiinae) based on early stage and adult morphology. Zool. J. Linn. Soc. 127:277–344.

    Article  Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPherson, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Ann. Rev. Ecolog. Syst. 11:41–65.

    Article  Google Scholar 

  • Purvis, A. and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analyzing comparative data. Comput. Appl. Biosci. 11:247–251.

    PubMed  CAS  Google Scholar 

  • Raubenheimer, D. 1989. Cyanoglycoside gynocardin from Acraea horta (L) (Lepidoptera: Acraeinae). Possible implications for evolution of Acraeine host choice. J. Chem. Ecol. 15:2177–2189.

    Article  CAS  Google Scholar 

  • Rausher, M. D. 1988. Is coevolution dead? Ecology 69:898–901.

    Article  Google Scholar 

  • Rothschild, M. 1971. Speculations about mimicry with Henry Ford, pp. 202–223, in R. Creed (ed.). Ecological Genetics and Evolution. Blackwells Scientific Publications, Oxford.

    Google Scholar 

  • Rowell-Rahuer, M. and Pasteels, J. M. 1992. Third trophic level influences of plant allelochemicals, pp. 243–277, in G. A. Roenthal and M. R. Berenbaum (eds.). Herbivores: Their Interaction with Secondary Metabolites. Academic Press, San Diego, CA.

    Google Scholar 

  • Schappert, P. J. and Shore J. S. 1995. Cyanogenesis in Turnera ulmifolia L. (Turneraceae). I. Phenotypic distribution and genetic variation for cyanogenesis on Jamaica. Heredity 74:392–404.

    Article  Google Scholar 

  • Schultz, J. C. 1988. Many factors influence the evolution of herbivore diets, but plant chemistry is central. Ecology 69:896–897.

    Article  Google Scholar 

  • Seigler, D. S. 1975. Isolation and Identification of naturally occurring cyanogenic glycosides. Phytochemistry 14:9–29.

    Article  CAS  Google Scholar 

  • Seigler, D. S. and Brinker, A. M. 1993. Characterization of cyanogenic glycosides, cyanolipids, nitroglycosides, organic nitro compounds and nitrile glucosides from plants. Methods Plant Biochem. 8:51–131.

    CAS  Google Scholar 

  • Singer, M., Carriere, Y., Theuring, C., and Hartmann, T. 2004. Disentangling food quality from resistance against parasitoids: diet choice by a generalist caterpillar. Am. Nat. 164:423–429.

    Article  PubMed  Google Scholar 

  • Smiley, J. 1978. Plant chemistry and the evolution of host specificity: New evidence for Heliconius and Passiflora. Science 201:745–747.

    Article  CAS  PubMed  Google Scholar 

  • Smiley, J. T. 1985. Are chemical barriers necessary for evolution of butterfly–plant associations. Oecologia 65:580–583.

    Article  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. 1981. Biometry. 2nd edition. W. H. Freeman, New York.

    Google Scholar 

  • Spencer, K. C. 1988. Chemical mediation of coevolution in the Passiflora–Heliconius interaction, pp.167–239, in K. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, London.

    Google Scholar 

  • Spencer, K. C. and Seigler, D. S. 1984a. Isolation and identification of cyclopentenoid cyanogens. Phytochem. Bull. 16:13–21.

    Google Scholar 

  • Spencer, K. C. and Seigler, D. S. 1984b. Gynocardin from Passiflora. Planta Med. 51:356–357.

    Article  Google Scholar 

  • Spencer, K. C. and Seigler, D. S. 1984c. The co-occurrence of cyclopentenoid and valine/isoleucine derived cyanogenic glycosides in a species of Passiflora. Biochem. Syst. Ecol. 13:303–304.

    Article  Google Scholar 

  • Strong, D. R., Lawton, J. H. and Southwood, S. R. 1984. The evolution of phytophagous insects, pp. 5–45, in Insects on Plants: Community Patterns and Mechanisms. Harvard University Press: Massachusetts.

  • Thompson, J. N. 1988. Coevolution and alternative hypotheses on insect/plant interactions. Ecology 69:898–895.

    Article  Google Scholar 

  • Whittaker, R. H. and Feeny, P. P. 1971. Allelochemicals: chemical interactions between species. Science 171:757–770.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K. S. and Gilbert, L. E. 1981. Insects as selective agents on plant vegetative morphology: Egg mimicry reduces egg laying by butterflies. Science 212:467–469.

    Article  CAS  PubMed  Google Scholar 

  • Zangerl, A. R., Huang, T., and McGovern, J. L. 2002. Paradoxical host shift by Depressaria pastinacella in North America: is enemy-free space involved? Oikos 98(3):431–436.

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Spencer for the training, equipment, and chemicals that made the work possible, and P. Schappert for the technical advice. K. Spencer, M. Cardoso, P. Schappert, C. Penz, E. Deinert, P. Chai, and R. Dudley contributed useful discussion and criticisms. We thank S. Bramblett for computer graphics, and undergraduates A. Gruetzmacher, R. Saberi, and G. Parikih for assistance in lab and insectary. We thank C. Penz and D. Kapan for providing Ecuadorian material via permits from INEFA and W. W. Benson for Brazilian material via permit with IBAMA. We thank the officials of MINENEM for permits to collect and export butterflies from Costa Rica, and to the staff of Corcovado National Park. Importation of butterflies was enabled by permits from USDA-APHIS. Greenhouse facilities were developed through NSF grants DEB-79060332 and BRS-8315399 with the support of U.T. Austin. Funding for this project was provided by the School for Biological Sciences and the Office of the VP for Research, U.T. Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene S. Engler-Chaouat.

Additional information

We dedicate our paper to the memory of the Honorable Miriam Rothschild, F.R.S., a friend, colleague and supporter of many young scientists. Her enthusiasm and delight in chemical ecology and natural history continued to the last weeks of her life.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engler-Chaouat, H.S., Gilbert, L.E. De novo Synthesis vs. Sequestration: Negatively Correlated Metabolic Traits and the Evolution of Host Plant Specialization in Cyanogenic Butterflies. J Chem Ecol 33, 25–42 (2007). https://doi.org/10.1007/s10886-006-9207-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9207-8

Keywords

Navigation