Skip to main content
Log in

Sequestration ofVeratrum alkaloids by specialistRhadinoceraea nodicornis konow (Hymenoptera, Tenthredinidae) and its ecoethological implications

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The larvae of the specialist sawflyRhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) store in their hemolymph ceveratrum alkaloids originating from the host plantVeratrum album L. (Liliales, Melanthiaceae). The major alkaloid found in the hemolymph is 3-acetyl-zygadenine. Qualitative and quantitative data showed that the plant alkaloid 3-angeloylzygadenine is most probably metabolized in the larval gut to zygadenine and then acetylated. A still unidentified alkaloid with a molecular weight of 591 Da was detected in plant leaves as well as in the gut, hemolymph, and excrement of larvae. Protoveratrine A and B, on the other hand, seem to be degraded by the larvae. These findings indicate that the pathway of ceveratrum alkaloids inR. nodicornis larvae is fourfold: direct sequestration, metabolism followed by sequestration, excretion of intact alkaloids, and degradation. In contrast, no ceveratrum alkaloids were detected in the hemolymph and excrement of larvae of the generalist sawflyAglaostigma sp. fed withV. album leaves. Bioassays with the antMyrmica rubra L. proved that the hemolymph ofR. nodicornis larvae is highly deterrent and toxic. In bioassays evaluating defensive efficiency against predators (ants, spiders, and bushcrickets), no larvae were eaten. Ceveratrum alkaloids were also detected in the hibernating prepupae ofR. nodicornis. In feeding bioassays, the shrewCrocidura russula Hermann rarely fed upon prepupae, suggesting that this stage is also protected from predation to some degree. In field surveys, the only parasitoids recorded were two ichneumonid species that are believed to be specialized onR. nodicornis. Bioassays and field observations enable us to suppose thatR. nodicornis and its enemies produce a food web of ion connectance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aplin, R.T., Benn, M.H., andRothschild, M. 1968. Poisonous alkaloids in the body tissues of the cinnabar moth,Callimorpha jacobaeae (L.).Nature 219:747–748.

    CAS  Google Scholar 

  • Benson, R.B. 1950. An introduction to the natural history of British sawflies (Hymenoptera, Symphyta).Trans. Soc. Br. Entomol. 10:45–142.

    Google Scholar 

  • Bergmann, E.D., Levinson, Z.H., andMechoulam, R. 1958. The toxicity ofVeratrum andSolanum alkaloids to housefly larvae.J. Insect Physiol. 2:162–177.

    Article  CAS  Google Scholar 

  • Bernays, E., andGraham, M. 1988. On the evolution of host specifity in phytophagous arthropods.Ecology 69:886–892.

    Google Scholar 

  • Binns, W., Keeler, R.F., andBalls, L.D. 1972. Congenital deformities in lambs, calves and goats resulting from maternal ingestion ofVeratrum californicum: Hare clip, cleft palate, ataxia and hypoplasia of metacarpal and metatarsal bones.Clin. Toxicol. 5:245–261.

    Article  PubMed  CAS  Google Scholar 

  • Blum, M.S., Rivier, L., andPlowman, T. 1981. Fate of cocaine in the lymantriidEloria noyesi, a predator ofErythroxylum coca.Phytochemistry 20:2499–2500.

    Article  CAS  Google Scholar 

  • Boevé, J.-L. 1991. Gregariousness, field distribution and defence in the sawfly larvaeCroesus varus andC. septentrionalis (Hymenoptera, Tenthredinidae).Oecologia 85:440–446.

    Article  Google Scholar 

  • Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids),Naturwissenschaften 73:17–26.

    Article  Google Scholar 

  • Bowers, M.D. 1990. Recycling plant natural products for insect defense, pp. 353–386,in D.L. Evans and J.O. Schmidt (eds.). Insect Defenses—Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany.

    Google Scholar 

  • Brown, K.S., Jr. 1984. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator.Nature 309:707–709.

    Article  CAS  Google Scholar 

  • Crosby, D.G. 1971. Minor insecticides of plant origin, pp. 177–239,in M. Jacobsen and D.G. Crosby (eds.). Naturally occurring insecticides. Dekker, New York.

    Google Scholar 

  • Edgar, J.A., andCulvenor, C.C.J. 1974. Pyrrolizidine ester alkaloid in danaid butterflies.Nature 248:614.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R.A. 1940. Insecticidal action of extracts ofVeratrum viride.J. Econ. Entomol. 33:728–733.

    CAS  Google Scholar 

  • Haas, H.T.H. 1938. Zur Pharmakologie des Germerins und seiner Spaltprodukte.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 189:397.

    Article  CAS  Google Scholar 

  • Heads, P.A., andLawton, J.H. 1985. Bracken, ants and extrafloral nectaries. III. How insect herbivores avoid ant predation.Ecol. Entomol. 10:29–42.

    Google Scholar 

  • Hegnauer, R. 1988. Biochemistry, distribution and taxonomic relevance of higher plant alkaloids.Phytochemistry 27:2423–2427.

    Article  CAS  Google Scholar 

  • Honerjäger, P., Frelin, C., andLazdunski, M. 1982. Actions, interactions, and apparent affinities of various ceveratrum alkaloids at sodium channels of cultured neuroblastoma and cardiac cells.Naunyn-Schmiedeberg's Arch. Pharmakol. 321:123–129.

    Article  Google Scholar 

  • Kupchan, S.M., Zimmerman, J.H., andAfonso, A. 1961. The alkaloids and taxonomy ofVeratrum and related genera.Lloydia 24:1–26.

    Google Scholar 

  • Lorenz H., andKraus, M. 1957. Die Larvalsystematik der Blattwespen (Tenthredinoidea und Megalodontoidea). Academie Verlag, Berlin.

    Google Scholar 

  • Majak, W., McDiarmid, R.E., Cristofoli, W., Sun, F., andBenn, M. 1992. Content of zygacine inZygadenus venenosus at different stages of growth.Phytochemistry 31:3417–3418.

    Article  CAS  Google Scholar 

  • Metcalf, R.L. 1977. Plant derivatives for insect control.Abstr. Trop. Agric. 5:165–177.

    Google Scholar 

  • Nagasaka, K. 1991. Crucial factors determining the spatio-temporal distribution patterns of threeAthalia sawflies feeding on common cruciferous plants.Res. Popul. Ecol. 33:115–128.

    Google Scholar 

  • Pasteels, J.M., Daloze, D., andRowell-Rahier, M. 1986. Chemical defence in chrysomelid eggs and neonate larvae.Physiol. Entomol. 11:29–37.

    CAS  Google Scholar 

  • Pasteels, J.M., Rowell-Rahier, M., andRaupp, M.J. 1988. Plant-derived defense in chrysomelid beetles, pp. 235–272,in P. Barbosa and D. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. Wiley, New York.

    Google Scholar 

  • Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies.Annu. Rev. Ecol. Syst. 1980:41–65.

    Article  Google Scholar 

  • Rothschild, M. 1972. Secondary plant substances and warning colouration in insects.Symp. R. Entomol. Soc. London 6:59–83.

    Google Scholar 

  • Rothschild, M., Aplin, R.T., Cockrum, P.A., Edgar, J.A., Fairweather, P., andLees, R. 1979. Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae.Biol. J. Linn. Soc. 12:305–326.

    Google Scholar 

  • Rowell-Rahier, M., andPasteels, J.M. 1992. Third trophic level influences of plant allelochemicals, pp. 243–277,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores, Their Interactions with Secondary Plant Metabolites. Academic Press, London.

    Google Scholar 

  • Schedl, W. 1991. Hymenoptera, Unterordnung Symphyta. Walter de Gruyter, Berlin.

    Google Scholar 

  • Smith, D.R., andMcDearman, W. 1990. A newRhadinoceraea (Hymenoptera: Tenthredinidae) feeding onZigadenus (Liliaceae) from southeastern United States.Entomol. News 101:13–19.

    Google Scholar 

  • Teuscher, E., andLindequist, U. 1987. Biogene Gifte. Gustaf Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ujvary, I., Eya, B.K., Grendell, R.L., Toia, R.F., andCasida, J.E. 1991. Insecticidal activity of various 3-acyl and other derivatives of veracevine relative to theVeratrum alkaloids veratridine and cevadine.J. Agric. Food Chem. 39:1875–1881.

    Article  CAS  Google Scholar 

  • Velbinger, H.H. 1947. Veratrin-Intoxikation bei Insekten. Beitrag zur Toxikologie der Alkaloide.Süddtsch. Apoth. Zitg. 9:89–95.

    Google Scholar 

  • Wink, M. 1992. The role of quinolizidine alkaloids in plant-insect interactions, pp. 131–166,in E. Bernays (ed.). Insect-Plant Interactions. Vol. IV. CRC Press, Boca Raton, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffner, U., Boevé, JL., Gfeller, H. et al. Sequestration ofVeratrum alkaloids by specialistRhadinoceraea nodicornis konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20, 3233–3250 (1994). https://doi.org/10.1007/BF02033723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033723

Key Words

Navigation