Skip to main content

Advertisement

Log in

Genetic Approaches for Iron and Zinc Biofortification and Arsenic Decrease in Oryza sativa L. Grains

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rice is the staple diet to half of the world’s population, being a major source of carbohydrates, vitamins, and some essential elements. However, rice naturally contains low amounts of essential minerals such as iron (Fe) and zinc (Zn), which are drastically decreased after milling. Thus, populations that consume mostly rice may have micronutrient deficiency, which is associated with different diseases. On the other hand, rice irrigated by flooding has a high ability to accumulate arsenic (As) in the grain. Therefore, when rice is grown in areas with contaminated soil or irrigation water, it represents a risk factor for consumers, since As is associated with cancer and other diseases. Different strategies have been used to mitigate micronutrient deficiencies such as Fe and Zn and to prevent As from entering the food chain. Each strategy has its positive and its negative sides. The development of genetically biofortified rice plants with Fe and Zn and with low As accumulation is one of the most promising strategies, since it does not represent an additional cost for farmers, and gives benefits to consumers as well. Considering the importance of genetic improvement (traditional or molecular) to decrease the impact of micronutrient deficiencies such as Fe and Zn and contamination with As, this review aimed to summarize the major efforts, advances, and challenges for genetic biofortification of Fe and Zn and decrease in As content in rice grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Chen et al. [179]

Fig. 4

Similar content being viewed by others

References

  1. Ibeanu VN, Edeh CG, Ani PN (2020) Evidence-based strategy for prevention of hidden hunger among adolescents in a suburb of Nigeria. BMC Public Health 20:1–10. https://doi.org/10.1186/s12889-020-09729-8

    Article  Google Scholar 

  2. Bamji MS, Murty PVVS, Sudhir PD (2021) Nutritionally sensitive agriculture—an approach to reducing hidden hunger. Eur J Clin Nutr 75:1001–1009. https://doi.org/10.1038/s41430-020-00760-x

    Article  PubMed  Google Scholar 

  3. Garg M, Sharma N, Sharma S et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5https://doi.org/10.3389/fnut.2018.00012

  4. Shahzad Z, Rouached H, Rakha A (2014) Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr Rev Food Sci Food Saf 13:329–346. https://doi.org/10.1111/1541-4337.12063

    Article  CAS  PubMed  Google Scholar 

  5. Yu S, Tian L (2018) Breeding major cereal grains through the lens of nutrition sensitivity. Mol Plant 11:23–30. https://doi.org/10.1016/j.molp.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  6. Gödecke T, Stein AJ, Qaim M (2018) The global burden of chronic and hidden hunger: trends and determinants. Glob Food Sec 17:21–29. https://doi.org/10.1016/j.gfs.2018.03.004

    Article  Google Scholar 

  7. Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breed 132:437–445. https://doi.org/10.1111/pbr.12040

    Article  Google Scholar 

  8. Ludwig Y, Slamet-Loedin IH (2019) Genetic biofortification to enrich rice and wheat grain iron: from genes to product. Front Plant Sci 10:1–10. https://doi.org/10.3389/fpls.2019.00833

    Article  Google Scholar 

  9. Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.01007

    Article  Google Scholar 

  10. Biswas JK, Warke M, Datta R, Sarkar D (2020) Is arsenic in rice a major human health concern? Curr Pollut Reports 6:37–42. https://doi.org/10.1007/s40726-020-00148-2

    Article  CAS  Google Scholar 

  11. Panthri M, Gupta M (2018) Plausible strategies to reduce arsenic accumulation in rice. Elsevier Inc.

  12. Mawia AM, Hui S, Zhou L et al (2021) Inorganic arsenic toxicity and alleviation strategies in rice. J Hazard Mater 408:124751. https://doi.org/10.1016/j.jhazmat.2020.124751

    Article  CAS  PubMed  Google Scholar 

  13. Naito S, Matsumoto E, Shindoh K, Nishimura T (2015) Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem 168:294–301. https://doi.org/10.1016/j.foodchem.2014.07.060

    Article  CAS  PubMed  Google Scholar 

  14. Zhang F, Gu F, Yan H et al (2020) Effects of soaking process on arsenic and other mineral elements in brown rice. Food Sci Hum Wellness 9:168–175. https://doi.org/10.1016/j.fshw.2020.01.005

    Article  Google Scholar 

  15. Mbunga BK, Mapatano MA, Strand TA et al (2021) Prevalence of anemia, iron-deficiency anemia, and associated factors among children aged 1–5 years in the rural, malaria-endemic setting of Popokabaka, Democratic Republic of Congo: a cross-sectional study. Nutrients 13:1010. https://doi.org/10.3390/nu13031010

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sheikh AB, Javed N, Ijaz Z et al (2021) Iron deficiency anemia in males: a dosing dilemma? J Community Hosp Intern Med Perspect 11:46–52. https://doi.org/10.1080/20009666.2020.1831743

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rehman A, ur, Masood S, Khan NU, et al (2021) Molecular basis of Iron Biofortification in crop plants; a step towards sustainability. Plant Breed 140:12–22. https://doi.org/10.1111/pbr.12886

    Article  CAS  Google Scholar 

  18. Saenchai C, Prom-u-thai C, Jamjod S et al (2012) Genotypic variation in milling depression of iron and zinc concentration in rice grain. Plant Soil 361:271–278. https://doi.org/10.1007/s11104-012-1228-1

    Article  CAS  Google Scholar 

  19. de Oliveira VF, Busanello C, Viana VE et al (2021) Assessing mineral and toxic elements content in rice grains grown in southern Brazil. J Food Compos Anal 100https://doi.org/10.1016/j.jfca.2021.103914

  20. Maganti S, Swaminathan R, Parida A (2020) Variation in iron and zinc content in traditional rice genotypes. Agric Res 9:316–328. https://doi.org/10.1007/s40003-019-00429-3

    Article  CAS  Google Scholar 

  21. Yi Y, Lou GM (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844. https://doi.org/10.1046/j.1365-313X.1996.10050835.x

    Article  CAS  PubMed  Google Scholar 

  22. Nozoye T, Nagasaka S, Kobayashi T et al (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454. https://doi.org/10.1074/jbc.M110.180026

    Article  CAS  PubMed  Google Scholar 

  23. Curie C, Panaviene Z, Loulergue C et al (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349. https://doi.org/10.1038/35053080

    Article  CAS  PubMed  Google Scholar 

  24. Inoue H, Kobayashi T, Nozoye T et al (2009) Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479. https://doi.org/10.1074/jbc.M806042200

    Article  CAS  PubMed  Google Scholar 

  25. Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4:21–27. https://doi.org/10.1007/s12284-011-9061-3

    Article  Google Scholar 

  26. Inoue H, Higuchi K, Takahashi M et al (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381. https://doi.org/10.1046/j.1365-313X.2003.01878.x

    Article  CAS  PubMed  Google Scholar 

  27. Bashir K, Inoue H, Nagasaka S et al (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402. https://doi.org/10.1074/jbc.M604133200

    Article  CAS  PubMed  Google Scholar 

  28. Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3:122–130. https://doi.org/10.1007/s12284-010-9042-y

    Article  Google Scholar 

  29. Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346. https://doi.org/10.1111/j.1365-313X.2005.02624.x

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Oliveira AL, Chander S, Ortiz R et al (2018) Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.00937

    Article  Google Scholar 

  31. Koike S, Inoue H, Mizuno D et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424. https://doi.org/10.1111/j.1365-313X.2004.02146.x

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. https://doi.org/10.1146/annurev-arplant-042811-105522

    Article  CAS  PubMed  Google Scholar 

  33. Yokosho K, Yamaji N, Ueno D et al (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305. https://doi.org/10.1104/pp.108.128132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yokosho K, Yamaji N, Ma JF (2016) OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot 67:5485–5494. https://doi.org/10.1093/jxb/erw314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta - Mol Cell Res 1763:609–620. https://doi.org/10.1016/j.bbamcr.2006.05.007

    Article  CAS  Google Scholar 

  36. Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193. https://doi.org/10.1016/S1360-1385(97)01033-9

    Article  Google Scholar 

  37. Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410. https://doi.org/10.1111/j.1365-313X.2012.05088.x

    Article  CAS  PubMed  Google Scholar 

  38. Morrissey J, Baxter IR, Lee J et al (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338. https://doi.org/10.1105/tpc.109.069401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bashir K, Ishimaru Y, Shimo H et al (2011) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2https://doi.org/10.1038/ncomms1326

  40. Ogo Y, Nakanishi Itai R, Nakanishi H et al (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377. https://doi.org/10.1111/j.1365-313X.2007.03149.x

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi T, Itai RN, Ogo Y et al (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60:948–961. https://doi.org/10.1111/j.1365-313X.2009.04015.x

    Article  PubMed  Google Scholar 

  42. Zheng L, Ying Y, Wang L et al (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:1–9. https://doi.org/10.1186/1471-2229-10-166

    Article  CAS  Google Scholar 

  43. Aung MS, Masuda H (2020) How does rice defend against excess iron?: physiological and molecular mechanisms. Front Plant Sci 11:1–8. https://doi.org/10.3389/fpls.2020.01102

    Article  Google Scholar 

  44. Müller C, Kuki KN, Pinheiro DT et al (2015) Differential physiological responses in rice upon exposure to excess distinct iron forms. Plant Soil 391:123–138. https://doi.org/10.1007/s11104-015-2405-9

    Article  CAS  Google Scholar 

  45. Becker M, Asch F (2005) Iron toxicity in rice - conditions and management concepts. J Plant Nutr Soil Sci 168:558–573. https://doi.org/10.1002/jpln.200520504

    Article  CAS  Google Scholar 

  46. Quinet M, Vromman D, Clippe A et al (2012) Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant, Cell Environ 35:1837–1859. https://doi.org/10.1111/j.1365-3040.2012.02521.x

    Article  CAS  Google Scholar 

  47. Finatto T, de Oliveira AC, Chaparro C, et al (2015) Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice 8https://doi.org/10.1186/s12284-015-0045-6

  48. Aung MS, Masuda H, Kobayashi T, Nishizawa NK (2018) Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Sci Plant Nutr 64:370–385. https://doi.org/10.1080/00380768.2018.1443754

    Article  CAS  Google Scholar 

  49. Tadano T (1975) Devices of rice roots to tolerate high iron concentration in growth media. Japan Agric Res Q 9:34–39

    CAS  Google Scholar 

  50. Fang WC, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76. https://doi.org/10.1016/S0168-9452(00)00307-1

    Article  CAS  PubMed  Google Scholar 

  51. Gallie DR (2012) The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:695–709. https://doi.org/10.1093/jxb/err313

    Article  CAS  Google Scholar 

  52. Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell Environ 32:408–416. https://doi.org/10.1111/j.1365-3040.2009.01935.x

    Article  CAS  Google Scholar 

  53. Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90:207–215. https://doi.org/10.1007/s11103-015-0404-0

    Article  CAS  PubMed  Google Scholar 

  54. Banakar R, Alvarez Fernández Á, Abadía J et al (2017) The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnol J 15:423–432. https://doi.org/10.1111/pbi.12637

    Article  CAS  PubMed  Google Scholar 

  55. Lee S, Chiecko JC, Kim SA et al (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants 1[C][W][OA]. Plant Physiol 150:786–800. https://doi.org/10.1104/pp.109.135418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang C, Shinwari KI, Luo L, Zheng L (2018) OsYSL13 is involved in iron distribution in rice. Int J Mol Sci 19:1–14. https://doi.org/10.3390/ijms19113537

    Article  CAS  Google Scholar 

  57. Ishimaru Y, Masuda H, Bashir K et al (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390. https://doi.org/10.1111/j.1365-313X.2010.04158.x

    Article  CAS  PubMed  Google Scholar 

  58. Senoura T, Sakashita E, Kobayashi T et al (2017) The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Mol Biol 95:375–387. https://doi.org/10.1007/s11103-017-0656-y

    Article  CAS  PubMed  Google Scholar 

  59. Zheng L, Cheng Z, Ai C et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS ONE 5:1–7. https://doi.org/10.1371/journal.pone.0010190

    Article  CAS  Google Scholar 

  60. Lee S, Kim YS, Jeon US et al (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33:269–275. https://doi.org/10.1007/s10059-012-2231-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019. https://doi.org/10.1073/pnas.0910950106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6https://doi.org/10.1371/journal.pone.0024476

  63. Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166. https://doi.org/10.1007/s12284-009-9031-1

    Article  Google Scholar 

  64. Díaz-Benito P, Banakar R, Rodríguez-Menéndez S et al (2018) Iron and zinc in the embryo and endosperm of rice (Oryza sativa l.) seeds in contrasting 2′-deoxymugineic acid/nicotianamine scenarios. Front Plant Sci 9:1–17. https://doi.org/10.3389/fpls.2018.01190

    Article  Google Scholar 

  65. Banakar R, Alvarez Fernandez A, Díaz-Benito P et al (2017) Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. J Exp Bot 68:4983–4995. https://doi.org/10.1093/jxb/erx304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paul S, Ali N, Gayen D et al (2012) Molecular breeding of Osfer 2 gene to increase iron nutrition in rice grain. GM Crops Food 3:310–316. https://doi.org/10.4161/gmcr.22104

    Article  PubMed  Google Scholar 

  67. Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286. https://doi.org/10.1038/7029

    Article  CAS  PubMed  Google Scholar 

  68. Qu LQ, Yoshihara T, Ooyama A et al (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233. https://doi.org/10.1007/s00425-005-1530-8

    Article  CAS  Google Scholar 

  69. Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378. https://doi.org/10.1016/S0168-9452(02)00421-1

    Article  CAS  Google Scholar 

  70. Khalekuzzaman M, Datta K, Oliva N et al (2006) Stable integration, expression and inheritance of the. Indian J Biotechnol 5:26–31

    CAS  Google Scholar 

  71. Oliva N, Chadha-Mohanty P, Poletti S et al (2014) Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol Breed 33:23–37. https://doi.org/10.1007/s11032-013-9931-z

    Article  CAS  PubMed  Google Scholar 

  72. Drakakaki G, Christou P, Stöger E (2000) Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res 9:445–452. https://doi.org/10.1023/A:1026534009483

    Article  CAS  PubMed  Google Scholar 

  73. Bashir K, Takahashi R, AkhtarS, et al (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6https://doi.org/10.1186/1939-8433-6-31

  74. Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S-190S. https://doi.org/10.1080/07315724.2002.10719264

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway. Gene 405:55–64. https://doi.org/10.1016/j.gene.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  76. Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644. https://doi.org/10.1111/j.1467-7652.2009.00430.x

    Article  CAS  PubMed  Google Scholar 

  77. Masuda H, Kobayashi T, Ishimaru Y et al (2013) Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci 4:1–12. https://doi.org/10.3389/fpls.2013.00132

    Article  Google Scholar 

  78. Aung MS, Masuda H, Kobayashi T et al (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:1–14. https://doi.org/10.3389/fpls.2013.00158

    Article  Google Scholar 

  79. Trijatmiko KR, Duenãs C, Tsakirpaloglou N et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:1–13. https://doi.org/10.1038/srep19792

    Article  CAS  Google Scholar 

  80. Singh SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-07198-5

    Article  CAS  Google Scholar 

  81. Wu TY, Gruissem W, Bhullar NK (2018) Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Sci 270:13–22. https://doi.org/10.1016/j.plantsci.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  82. Wu TY, Gruissem W, Bhullar NK (2019) Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. Plant Biotechnol J 17:9–20. https://doi.org/10.1111/pbi.12943

    Article  CAS  PubMed  Google Scholar 

  83. Ogo Y, Itai RN, Kobayashi T et al (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605. https://doi.org/10.1007/s11103-011-9752-6

    Article  CAS  PubMed  Google Scholar 

  84. Kobayashi T, Ogo Y, Itai RN et al (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci U S A 104:19150–19155. https://doi.org/10.1073/pnas.0707010104

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:392–396. https://doi.org/10.1177/156482650002100409

    Article  Google Scholar 

  86. Pinson SRM, Tarpley L, Yan W et al (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311. https://doi.org/10.2135/cropsci2013.10.0656

    Article  CAS  Google Scholar 

  87. Chandel G, Banerjee S, See S et al (2010) Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci 17:213–227. https://doi.org/10.1016/S1672-6308(09)60020-2

    Article  Google Scholar 

  88. Suwarto N (2011) Genotype × environment interaction for iron concentration of rice in Central Java of Indonesia. Rice Sci 18:75–78. https://doi.org/10.1016/S1672-6308(11)60011-5

    Article  Google Scholar 

  89. Hansen TH, Lombi E, Fitzgerald M et al (2012) Losses of essential mineral nutrients by polishing of rice differ among genotypes due to contrasting grain hardness and mineral distribution. J Cereal Sci 56:307–315. https://doi.org/10.1016/j.jcs.2012.07.002

    Article  CAS  Google Scholar 

  90. Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201. https://doi.org/10.1007/s11104-012-1240-5

    Article  CAS  Google Scholar 

  91. Zaman Q, uz, Aslam Z, Yaseen M, et al (2018) Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Arch Agron Soil Sci 64:147–161. https://doi.org/10.1080/03650340.2017.1338343

    Article  CAS  Google Scholar 

  92. Graham RD, Knez M, Welch RM (2012) How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency?, 1st ed. Elsevier Inc.

  93. Impa SM, Morete MJ, Ismail AM et al (2013) Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J Exp Bot 64:2739–2751. https://doi.org/10.1093/jxb/ert118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu CY, Lu LL, Yang XE et al (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773. https://doi.org/10.1021/jf100017e

    Article  CAS  PubMed  Google Scholar 

  95. Roy SC, Sharma BD (2014) Assessment of genetic diversity in rice [Oryza sativa L.] germplasm based on agro-morphology traits and zinc-iron content for crop improvement. Physiol Mol Biol Plants 20:209–224. https://doi.org/10.1007/s12298-014-0221-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741. https://doi.org/10.1104/pp.106.085225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48. https://doi.org/10.1007/s11104-007-9368-4

    Article  CAS  Google Scholar 

  98. Hansen TH, Laursen KH, Persson DP et al (2009) Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods 5:1–11. https://doi.org/10.1186/1746-4811-5-12

    Article  CAS  Google Scholar 

  99. Pradhan SK, Pandit E, Pawar S et al (2020) Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC Plant Biol 20:1–24. https://doi.org/10.1186/s12870-020-2262-4

    Article  CAS  Google Scholar 

  100. Kumar A, Lal MK, Kar SS et al (2017) Bioavailability of iron and zinc as affected by phytic acid content in rice grain. J Food Biochem 41:1–9. https://doi.org/10.1111/jfbc.12413

    Article  CAS  Google Scholar 

  101. Suzuki M, Tsukamoto T, Inoue H et al (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617. https://doi.org/10.1007/s11103-008-9292-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suzuki M, Morikawa KC, Nakanishi H et al (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77–85. https://doi.org/10.1111/j.1747-0765.2007.00205.x

    Article  CAS  Google Scholar 

  103. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  Google Scholar 

  104. Liu XS, Feng SJ, Zhang BQ et al (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19:1–16. https://doi.org/10.1186/s12870-019-1899-3

    Article  CAS  Google Scholar 

  105. Huang S, Sasaki A, Yamaji N et al (2020) The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol 183:1224–1234. https://doi.org/10.1104/pp.20.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen WR, Feng Y, Chao YE (2008) Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol 55:400–409. https://doi.org/10.1134/S1021443708030175

    Article  CAS  Google Scholar 

  107. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134. https://doi.org/10.1104/pp.103.026815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao L, Xiong J (2018) Improving rice grain quality by enhancing accumulation of iron and zinc while minimizing cadmium and lead. In: Rice crop - current developments. InTech, p 13

  109. Ishimaru Y, Suzuki M, Kobayashi T et al (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214. https://doi.org/10.1093/jxb/eri317

    Article  CAS  PubMed  Google Scholar 

  110. Lee S, Jeong HJ, Kim SA et al (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517. https://doi.org/10.1007/s11103-010-9637-0

    Article  CAS  PubMed  Google Scholar 

  111. Lee S, Kim SA, Lee J et al (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558. https://doi.org/10.1007/s10059-010-0069-0

    Article  CAS  PubMed  Google Scholar 

  112. Sasaki A, Yamaji N, Mitani-Ueno N et al (2015) A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84:374–384. https://doi.org/10.1111/tpj.13005

    Article  CAS  PubMed  Google Scholar 

  113. Tan L, Zhu Y, Fan T et al (2019) OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun 512:112–118. https://doi.org/10.1016/j.bbrc.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  114. Yamaji N, Xia J, Mitani-Ueno N et al (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939. https://doi.org/10.1104/pp.113.216564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nishiyama R, Tanoi K, Yanagisawa S, Yoneyama T (2013) Quantification of zinc transport via the phloem to the grain in rice plants (Oryza sativa L.) at early grain-filling by a combination of mathematical modeling and 65Zn tracing. Soil Sci Plant Nutr 59:750–755. https://doi.org/10.1080/00380768.2013.819774

    Article  CAS  Google Scholar 

  116. Olsen LI, Palmgren MG (2014) Many rivers to cross: the journey of zinc from soil to seed. Front Plant Sci 5https://doi.org/10.3389/fpls.2014.00030

  117. Assunção AGL, Herrero E, Lin YF et al (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301. https://doi.org/10.1073/pnas.1004788107

    Article  PubMed  PubMed Central  Google Scholar 

  118. Inaba S, Kurata R, Kobayashi M et al (2015) Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J 84:323–334. https://doi.org/10.1111/tpj.12996

    Article  CAS  PubMed  Google Scholar 

  119. Lilay GH, Castro PH, Guedes JG et al (2020) Rice F-bZIP transcription factors regulate the zinc deficiency response. J Exp Bot 71:3664–3677. https://doi.org/10.1093/jxb/eraa115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Phattarakul N, Rerkasem B, Li LJ et al (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141. https://doi.org/10.1007/s11104-012-1211-x

    Article  CAS  Google Scholar 

  121. Yin HJ, Gao XP, Stomph TJ et al (2016) Zinc concentration in rice (Oryza sativa L.) grains and allocation in plants as affected by different zinc fertilization strategies. Commun Soil Sci Plant Anal 47:761–768. https://doi.org/10.1080/00103624.2016.1146891

    Article  CAS  Google Scholar 

  122. Prom-u-thai C, Rashid A, Ram H, et al (2020) Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci 11https://doi.org/10.3389/fpls.2020.589835

  123. Praharaj S, Skalicky M, Maitra S et al (2021) Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 26:1–17. https://doi.org/10.3390/molecules26123509

    Article  CAS  Google Scholar 

  124. Krithika S, Balachandar D (2016) Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.00446

    Article  Google Scholar 

  125. Kaur H, Garg N (2021) Zinc toxicity in plants: a review. Planta 253:1–28. https://doi.org/10.1007/s00425-021-03642-z

    Article  CAS  Google Scholar 

  126. Gu HH, Zhan SS, Wang SZ et al (2012) Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 350:193–204. https://doi.org/10.1007/s11104-011-0894-8

    Article  CAS  Google Scholar 

  127. Liao Z, Chen Y, Ma J, et al (2019) Cd, Cu, and Zn accumulations caused by long-term fertilization in greenhouse soils and their potential risk assessment. Int J Environ Res Public Health 16https://doi.org/10.3390/ijerph16152805

  128. Jiang W, Struik PC, Van Keulen H et al (2008) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153:135–147. https://doi.org/10.1111/j.1744-7348.2008.00243.x

    Article  CAS  Google Scholar 

  129. Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv Agron 70:77–142. https://doi.org/10.1016/s0065-2113(01)70004-1

    Article  Google Scholar 

  130. Tan S, Han R, Li P et al (2015) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24:109–122. https://doi.org/10.1007/s11248-014-9822-z

    Article  CAS  PubMed  Google Scholar 

  131. Boonyaves K, Wu TY, Gruissem W, Bhullar NK (2017) Enhanced grain iron levels in iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.00130

    Article  Google Scholar 

  132. Kobayashi T, Nagasaka S, Senoura T, et al (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4https://doi.org/10.1038/ncomms3792

  133. Anuradha K, Agarwal S, Rao YV et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Gene 508:233–240. https://doi.org/10.1016/j.gene.2012.07.054

    Article  CAS  PubMed  Google Scholar 

  134. Ishikawa R, Iwata M, Taniko K et al (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS ONE 12:1–14. https://doi.org/10.1371/journal.pone.0187224

    Article  CAS  Google Scholar 

  135. Swamy BPM, Rahman MA, Inabangan-Asilo MA, et al (2016) Advances in breeding for high grain Zinc in Rice. Rice 9https://doi.org/10.1186/s12284-016-0122-5

  136. HarvestPlus (2014) Biofortification progress briefs. www.HarvestPlus.org

  137. Gillooly M, Bothwell TH, Charlton RW et al (1984) Factors affecting the absorption of iron from cereals. Br J Nutr 51:37–46. https://doi.org/10.1079/bjn19840007

    Article  CAS  PubMed  Google Scholar 

  138. Luo YW, Xie WH, Cui QX (2010) Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) flour and legume fractions. J Agric Food Chem 58:2483–2490. https://doi.org/10.1021/jf903275w

    Article  CAS  PubMed  Google Scholar 

  139. Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142:492–497. https://doi.org/10.3945/jn.111.149286

    Article  CAS  PubMed  Google Scholar 

  140. O’Dell BL, De Boland AR, Koirtyohann SR (1972) Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric Food Chem 20:718–723. https://doi.org/10.1021/jf60181a021

    Article  Google Scholar 

  141. Raboy V (2000) Low-phytic-acid grains 21:423–427

    Google Scholar 

  142. Raboy V (2001) Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462. https://doi.org/10.1016/S1360-1385(01)02104-5

    Article  CAS  PubMed  Google Scholar 

  143. Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033–1043. https://doi.org/10.1016/S0031-9422(03)00446-1

    Article  CAS  PubMed  Google Scholar 

  144. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191. https://doi.org/10.1631/jzus.B0710640

    Article  PubMed  PubMed Central  Google Scholar 

  145. Gibson RS, Raboy V, King JC (2018) Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev 76:793–804. https://doi.org/10.1093/nutrit/nuy028

    Article  PubMed  Google Scholar 

  146. Perera I, Seneweera S, Hirotsu N (2018) Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice 11https://doi.org/10.1186/s12284-018-0200-y

  147. Vlčko T, Ohnoutková L (2020) Allelic variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in Barley. Plants 9

  148. Itani T, Tamaki M, Arai E, Horino T (2002) Distribution of amylose, nitrogen, and minerals in rice kernels with various characters. J Agric Food Chem 50:5326–5332. https://doi.org/10.1021/jf020073x

    Article  CAS  PubMed  Google Scholar 

  149. Tagashira Y, Shimizu T, Miyamoto M et al (2015) Overexpression of a gene involved in phytic acid biosynthesis substantially increases phytic acid and total phosphorus in rice seeds. Plants 4:196–208. https://doi.org/10.3390/plants4020196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Silva VM, Putti FF, White PJ, dos Reis AR (2021) Phytic acid accumulation in plants: biosynthesis pathway regulation and role in human diet. Plant Physiol Biochem 164:132–146. https://doi.org/10.1016/j.plaphy.2021.04.035

    Article  CAS  PubMed  Google Scholar 

  151. Kishor DS, Lee C, Lee D, et al. (2018) Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). bioRxiv 1–20. https://doi.org/10.1101/493981

  152. Feng X, Yoshida KT (2004) Molecular approaches for producing low - phytic - acid grains in rice. Plant Biotechnol 21(183):189

    Google Scholar 

  153. Kuwano M, Ohyama A, Tanaka Y et al (2006) Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed 18:263–272. https://doi.org/10.1007/s11032-006-9038-x

    Article  CAS  Google Scholar 

  154. Kuwano M, Mimura T, Takaiwa F, Yoshida KT (2009) Generation of stable “low phytic acid” transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105. https://doi.org/10.1111/j.1467-7652.2008.00375.x

    Article  CAS  PubMed  Google Scholar 

  155. Jiang M, Liu Y, Liu Y et al (2019) Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice. Plants 8:114. https://doi.org/10.3390/plants8050114

    Article  CAS  PubMed Central  Google Scholar 

  156. Kim SI, Tai TH (2014) Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol Breed 34:1717–1729. https://doi.org/10.1007/s11032-014-0127-y

    Article  CAS  Google Scholar 

  157. Karmakar A, Bhattacharya S, Sengupta S et al (2020) RNAi-mediated silencing of ITPK gene reduces phytic acid content, alters transcripts of phytic acid biosynthetic genes, and modulates mineral distribution in rice seeds. Rice Sci 27:315–328. https://doi.org/10.1016/j.rsci.2020.05.007

    Article  Google Scholar 

  158. Ali N, Paul S, Gayen D et al (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS ONE 8:1–12. https://doi.org/10.1371/journal.pone.0068161

    Article  CAS  Google Scholar 

  159. Khan MSS, Basnet R, Islam SA, Shu Q (2019) Mutational analysis of OsPLDα1 reveals its involvement in phytic acid biosynthesis in rice grains. J Agric Food Chem 67:11436–11443. https://doi.org/10.1021/acs.jafc.9b05052

    Article  CAS  PubMed  Google Scholar 

  160. Lucca P, Hurrell R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. J Sci Food Agric 81:828–834. https://doi.org/10.1002/jsfa.886

    Article  CAS  Google Scholar 

  161. Liu Z, Cheng F, Zhang G (2005) Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chem 89:49–52. https://doi.org/10.1016/j.foodchem.2004.01.081

    Article  CAS  Google Scholar 

  162. Wang KM, Wu JG, Li G et al (2011) Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. J Cereal Sci 54:116–121. https://doi.org/10.1016/j.jcs.2011.03.002

    Article  CAS  Google Scholar 

  163. Perera I, Fukushima A, Arai M et al (2019) Identification of low phytic acid and high Zn bioavailable rice (Oryza sativa L.) from 69 accessions of the world rice core collection. J Cereal Sci 85:206–213. https://doi.org/10.1016/j.jcs.2018.12.010

    Article  CAS  Google Scholar 

  164. Liu QL, Xu XH, Ren XL et al (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814. https://doi.org/10.1007/s00122-006-0478-9

    Article  CAS  PubMed  Google Scholar 

  165. Qamar ZU, Hameed A, Ashraf M et al (2019) Development and molecular characterization of low phytate basmati rice through induced mutagenesis, hybridization, backcross, and marker assisted breeding. Front Plant Sci 10:1–13. https://doi.org/10.3389/fpls.2019.01525

    Article  Google Scholar 

  166. Lott JNA, Liu JC, Ockenden I et al (2004) Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1–1) rice. Seed Sci Res 14:109–116. https://doi.org/10.1079/ssr2004160

    Article  Google Scholar 

  167. Frank T, Habernegg R, Yuan FJ et al (2009) Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean. J Food Compos Anal 22:278–284. https://doi.org/10.1016/j.jfca.2008.11.022

    Article  CAS  Google Scholar 

  168. Ali N, Paul S, Gayen D et al (2013) RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. Rice 6:1–12. https://doi.org/10.1186/1939-8433-6-1

    Article  Google Scholar 

  169. Zhu XH, Zhang PP, Chen XG et al (2016) Natural and anthropogenic influences on the arsenic geochemistry of lacustrine sediment from a typical fault-controlled highland lake: Yangzonghai Lake, Yunnan, China. Environ Earth Sci 75:1–14. https://doi.org/10.1007/s12665-015-4924-3

    Article  CAS  Google Scholar 

  170. Gao P, Huang J, Wang Y et al (2021) Effects of nearly four decades of long-term fertilization on the availability, fraction and environmental risk of cadmium and arsenic in red soils. J Environ Manage 295:113097. https://doi.org/10.1016/j.jenvman.2021.113097

    Article  CAS  PubMed  Google Scholar 

  171. ATSDR (2007) Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/

  172. Medda N, Patra R, Ghosh TK, Maiti S (2020) Neurotoxic mechanism of arsenic: synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment. Biol Trace Elem Res 198:8–15. https://doi.org/10.1007/s12011-020-02044-8

    Article  CAS  PubMed  Google Scholar 

  173. Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Reports 1:35–46. https://doi.org/10.1007/s40726-015-0004-2

    Article  CAS  Google Scholar 

  174. Murugaiyan V, Zeibig F, Anumalla M, et al. (2021) Arsenic stress responses and accumulation in rice

  175. Kara S, Chormey DS, Saygılar A, Bakırdere S (2021) Arsenic speciation in rice samples for trace level determination by high performance liquid chromatography-inductively coupled plasma-mass spectrometry. Food Chem 356:129706. https://doi.org/10.1016/j.foodchem.2021.129706

    Article  CAS  PubMed  Google Scholar 

  176. Zhou Q, Xi S (2018) A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 99:78–88. https://doi.org/10.1016/j.yrtph.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  177. Beans C (2021) Keeping arsenic out of rice. Proc Natl Acad Sci U S A 118:11–14. https://doi.org/10.1073/pnas.2113071118

    Article  CAS  Google Scholar 

  178. Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935. https://doi.org/10.1073/pnas.0802361105

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chen Y, Han YH, Cao Y, et al (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8https://doi.org/10.3389/fpls.2017.00268

  180. Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691. https://doi.org/10.1038/nature04590

    Article  CAS  PubMed  Google Scholar 

  181. Kamiya T, Islam MR, Duan G et al (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590. https://doi.org/10.1080/00380768.2013.804390

    Article  CAS  Google Scholar 

  182. Cao Y, Sun D, Ai H et al (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138. https://doi.org/10.1021/acs.est.7b03028

    Article  CAS  PubMed  Google Scholar 

  183. Wang P, Zhang W, Mao C et al (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67:6051–6059. https://doi.org/10.1093/jxb/erw362

    Article  CAS  PubMed  Google Scholar 

  184. Shi S, Wang T, Chen Z et al (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719. https://doi.org/10.1104/pp.16.01332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:1–9. https://doi.org/10.3389/fpls.2018.00751

    Article  Google Scholar 

  186. Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific -glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842. https://doi.org/10.1073/pnas.86.18.6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen Y, Moore KL, Miller AJ et al (2015) The role of nodes in arsenic storage and distribution in rice. J Exp Bot 66:3717–3724. https://doi.org/10.1093/jxb/erv164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Song WY, Yamaki T, Yamaji N et al (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704. https://doi.org/10.1073/pnas.1414968111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Indriolo E, Na GN, Ellis D et al (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057. https://doi.org/10.1105/tpc.109.069773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chen Y, Xu W, Shen H et al (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362. https://doi.org/10.1021/es4012096

    Article  CAS  PubMed  Google Scholar 

  191. Chen Y, Hua CY, Jia MR et al (2017) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51:10387–10395. https://doi.org/10.1021/acs.est.7b03369

    Article  CAS  PubMed  Google Scholar 

  192. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    Article  CAS  PubMed  Google Scholar 

  193. Bakhat HF, Zia Z, Fahad S et al (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158. https://doi.org/10.1007/s11356-017-8462-2

    Article  CAS  Google Scholar 

  194. Huhmann BL, Harvey CF, Uddin A et al (2017) Field study of rice yield diminished by soil arsenic in Bangladesh. Environ Sci Technol 51:11553–11560. https://doi.org/10.1021/acs.est.7b01487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tripathi P, Mishra A, Dwivedi S et al (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198. https://doi.org/10.1016/j.ecoenv.2011.12.019

    Article  CAS  PubMed  Google Scholar 

  196. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    Article  CAS  PubMed  Google Scholar 

  197. Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117. https://doi.org/10.1104/pp.010348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ma JF, Yamaji N, Mitani N et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212. https://doi.org/10.1038/nature05964

    Article  CAS  PubMed  Google Scholar 

  199. Wang FZ, Chen MX, Yu LJ et al (2017) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01868

    Article  Google Scholar 

  200. Verma PK, Verma S, Tripathi RD, Chakrabarty D (2020) A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance. Ecotoxicol Environ Saf 195:110471. https://doi.org/10.1016/j.ecoenv.2020.110471

    Article  CAS  PubMed  Google Scholar 

  201. Sun SK, Chen Y, Che J et al (2018) Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol 219:641–653. https://doi.org/10.1111/nph.15190

    Article  CAS  PubMed  Google Scholar 

  202. Chen Y, Sun SK, Tang Z et al (2017) The nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016. https://doi.org/10.1093/jxb/erx165

    Article  CAS  PubMed  Google Scholar 

  203. Hayashi S, Kuramata M, Abe T et al (2017) Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Plant J 91:840–848. https://doi.org/10.1111/tpj.13612

    Article  CAS  PubMed  Google Scholar 

  204. Shri M, Dave R, Diwedi S et al (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:1–10. https://doi.org/10.1038/srep05784

    Article  CAS  Google Scholar 

  205. Chen Y, Hua CY, Chen JX et al (2019) Expressing arsenite antiporter PvACR3;1 in rice (Oryza sativa L.) decreases inorganic arsenic content in rice grains. Environ Sci Technol 53:10062–10069. https://doi.org/10.1021/acs.est.9b02418

    Article  CAS  PubMed  Google Scholar 

  206. Tang Z, Chen Y, Miller AJ, Zhao FJ (2019) The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice. Plant Cell Physiol 60:1525–1535. https://doi.org/10.1093/pcp/pcz054

    Article  CAS  PubMed  Google Scholar 

  207. Ye Y, Li P, Xu T et al (2017) Ospt4 contributes to arsenate uptake and transport in rice. Front Plant Sci 8:1–12. https://doi.org/10.3389/fpls.2017.02197

    Article  Google Scholar 

  208. Xu J, Shi S, Wang L et al (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215:1090–1101. https://doi.org/10.1111/nph.14572

    Article  CAS  PubMed  Google Scholar 

  209. Wang P, Xu X, Tang Z et al (2018) Oswrky28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.01330

    Article  Google Scholar 

  210. Seyfferth AL, Webb SM, Andrews JC, Fendorf S (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L) roots having variable Fe coatings. Environ Sci Technol 44:8108–8113. https://doi.org/10.1021/es101139z

    Article  CAS  PubMed  Google Scholar 

  211. Wang JC, Xu H, Zhu Y et al (2013) OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot 64:3453–3466. https://doi.org/10.1093/jxb/ert187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhu Y, Cai XL, Wang ZY, Hong MM (2003) An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J Biol Chem 278:47803–47811. https://doi.org/10.1074/jbc.M302806200

    Article  CAS  PubMed  Google Scholar 

  213. Wu TY, Müller M, Gruissem W, Bhullar NK (2020) Genome wide analysis of the transcriptional profiles in different regions of the developing rice grains. Rice 13https://doi.org/10.1186/s12284-020-00421-4

  214. Norton GJ, Douglas A, Lahner B, et al. (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:. https://doi.org/10.1371/journal.pone.0089685

  215. Norton GJ, Islam MR, Deacon CM et al (2009) Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ Sci Technol 43:6070–6075. https://doi.org/10.1021/es901121j

    Article  CAS  PubMed  Google Scholar 

  216. Islam S, Rahman MM, Islam MR, Naidu R (2016) Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environ Int 96:139–155. https://doi.org/10.1016/j.envint.2016.09.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The fellowships were supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grant no. 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Pegoraro.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, V.E., Maltzahn, L.E., Costa de Oliveira, A. et al. Genetic Approaches for Iron and Zinc Biofortification and Arsenic Decrease in Oryza sativa L. Grains. Biol Trace Elem Res 200, 4505–4523 (2022). https://doi.org/10.1007/s12011-021-03018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03018-0

Keywords

Navigation