Skip to main content

Advertisement

Log in

Zinc toxicity in plants: a review

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants.

Abstract

Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Affourtit C, Moore AL (2004) Purification of the plant alternative oxidase from Arum maculatum: measurement, stability and metal requirement. Biochim Biophys Acta 1608:181–189

    CAS  PubMed  Google Scholar 

  • Aghajanzadeh TA, Prajapati DH, Burow M (2020) Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure. J Plant Physiol 244:153088

    CAS  PubMed  Google Scholar 

  • Alagarasan G, Dubey M, Aswathy KS, Chandel G (2017) Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front Plant Sci 8:775

    PubMed  PubMed Central  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. International zinc association International fertilizer industry association, Belgium, France, pp 1–54

    Google Scholar 

  • Andrejic G, Gajic G, Prica M, Dzeletovic Z, Rakic T (2018) Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica 56(4):1249–1258

    CAS  Google Scholar 

  • Arnold T, Kirk GJD, Wissuwa W, Frei M, Zhao FJ, Mason TFD, Weiss DJ (2010) Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell Environ 33:370–381

    CAS  PubMed  Google Scholar 

  • Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46(5):861–879

    CAS  PubMed  Google Scholar 

  • Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Eldik MV, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301

    PubMed  Google Scholar 

  • Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283

    CAS  PubMed  Google Scholar 

  • Aydin SS, Gökce E, Büyük I, Aras S (2012) Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters. Mutat Res 746:49–55

    Google Scholar 

  • Baran A (2012) Assessment of zinc content and mobility in maize. Ecol Chemi Eng A 19:699–706

    CAS  Google Scholar 

  • Barberon M, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G (2014) Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci USA 111:8293–8298

    CAS  PubMed  Google Scholar 

  • Barbosa BCF, Silva SC, de Oliveira RR, Chalfun A Jr (2016) Zinc supply impacts on the relative expression of a metallothionein- like gene in Coffea arabica plants. Plant Soil 411:179–191

    Google Scholar 

  • Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Blasco B, Ruiz JM (2014) Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. Plant Sci 227:110–121

    CAS  PubMed  Google Scholar 

  • Bazihizina N, Taiti C, Marti L, Rodrigo-Moreno A, Spinelli F, Giordano C, Caparrotta S, Gori M, Azzarello E, Mancuso S (2014) Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. J Exp Bot 65(17):4931–4942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37(2):251–268

    CAS  PubMed  Google Scholar 

  • Benchabane M, Schlüter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochemie 92:1657–1666

    CAS  Google Scholar 

  • Bernardy K, Farias JG, Dorneles AOS, Pereira AS, Schorr MRW, Thewes FR, Londero JEL, Nicoloso FT (2016) Changes in root morphology and dry matter production in Pfaffia glomerata (Spreng.) Pedersen accessions in response to excessive zinc. Rev Bras Pl Med 18:613–620

    Google Scholar 

  • Blasco B, Navarro-León E, Ruiz JM (2019) Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. Plant Sci 287(3):110201

    CAS  PubMed  Google Scholar 

  • Bouain N, Shahzad Z, Rouached A (2014) Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J Exp Bot 65:5725–5741

    CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in absence of the host plant. Soil Biol Biochem 37:573–579

    CAS  Google Scholar 

  • Cai HM, Huang S, Che J, Yamaji N, Ma JF (2019) The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J Exp Bot 70:2717–2725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldelas C, Weiss DJ (2017) Zinc homeostasis and isotopic fractionation in plants: a review. Plant Soil 411:17–46

    CAS  Google Scholar 

  • Caldelas C, Dong S, Araus JL, Weiss DJ (2010) Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc. J Environ Bot 62(6):2169–2178

    Google Scholar 

  • Cambrollé J, Mancilla- Laytón JM, Munoz-Vallés S, Figureueroa-Luque E, Luque T, Figureueroa ME (2013) Evaluation of Zn tolerance and accumulation potential of the coastal shrub Limoniastrum monopetalum (L.) Boiss. Environ Exp Bot 85:50–57

    Google Scholar 

  • Carbonare LD, White MD, Shukla V, Francini A, Perata P, Flashman E, Sebastiani L, Licausi F (2019) Zinc excess induces a hypoxia-like response by inhibiting cysteine oxidases in Poplar roots. Plant Physiol 180:1614–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardini A, Pellegrino E, White PJ, Mazzolai B, Mascherpa MC, Ercoli L (2021) Transcriptional regulation of genes involved in Zn transport after foliar Zn application to Medicago Sativa. Plants 10(3):476

    PubMed  PubMed Central  Google Scholar 

  • Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere 67:1117–1126

    CAS  PubMed  Google Scholar 

  • Cenkci S, Yildiz M, Cigerci IH, Konuk M, Bozdag A (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76:900–906

    CAS  PubMed  Google Scholar 

  • Cherif J, Derbel N, Nakkach M, Bergmann H, von Jemal F, Lakhdar ZB (2010) Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. J Photochem Photobiol 101:332–339

    CAS  Google Scholar 

  • Choi S, Hu Y-M, Corkins ME, Palmer AE, Bird AJ (2018) Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol. PLoS Genet 14(3):e1007262

    PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6):1347–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornu J-Y, Deinlein U, Höreth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S (2015) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206:738–750

    CAS  PubMed  Google Scholar 

  • Dahal K, Martyn GD, Alber NA, Vanlerberghe GC (2017) Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions. J Exp Bot 68:657–671

    CAS  PubMed  Google Scholar 

  • David-Assael O, Berezin I, Shoshani-Knaani N, Saul H, Mizrachy-Dagri T, Chen J, Brook E, Shaul O (2006) AtMHX1 is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Funct Plant Biol 33:661–672

    CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    CAS  PubMed  Google Scholar 

  • Desbrosses-Fonrouge A, Voight K, Schroder A, Arrivault S, Thomine S, Kraemer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579(19):4165–4174

    CAS  PubMed  Google Scholar 

  • Di Baccio D, Kopriva S, Sebastiani L, Rennenberg H (2005) Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytol 167:73–80

    PubMed  Google Scholar 

  • Di Baccio D, Tognetti R, Minnocci A, Sebastiani L (2009) Responses of the Populus × euramericana clone I-214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. Environ Exp Bot 67:153–163

    Google Scholar 

  • Di Baccio D, Galla G, Bracci T, Andreucci A, Barcaccia G, Tognetti R, Sebastiani L (2011) Transcriptome analysis of Populus × euramericana clone I-214 exposed to excess zinc. Tree Physiol 31:1293–1308

    PubMed  Google Scholar 

  • El-Ghamery AA, Mansour MM, Abou El-Yousser MA (2002) Effect of some heavy metals on mitotic activity, nucleic acids content and protein banding patterns in meristematic roots of Nigella sativa and Triticum aestivum. Egypt J Biotechnol 11:266–281

    CAS  Google Scholar 

  • El-Ghamery AA, El-Kholy MA, El-Yousser MAA (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mut Res 537:29–41

    CAS  Google Scholar 

  • El-Kafafi ES, Rizk AH (2013) Effects of cadmium and combined cadmium-zinc concentrations on rooting and nutrient uptake of cowpea seedlings grown in hydroponic. Am Eurasian J Agric Environ Sci 13:1050–1056

    Google Scholar 

  • Erenoglu EB (2019) Iron deficiency-induced zinc uptake by bread wheat. J Plant Nutr Soil Sci 000:1–6

    CAS  Google Scholar 

  • Erenoglu B, Nikolic M, Römheld V, Cakmak I (2002) Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant Soil 241:251–257

    CAS  Google Scholar 

  • Erturk FA, Nardemir G, Hilal AY, Arslan E, Agar G (2013) Determination of genotoxic effects of boron and zinc on Zea mays using protein and random amplification of polymorphic DNA analyses. Toxicol Ind Health 31(11):1015–1023

    PubMed  Google Scholar 

  • Evens NP, Buchner P, Williams LE, Hawkesford MJ (2017) The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum). Plant J 92(2):291–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasani E (2012) Plants that hyperaccumulate heavy metals. In: Antonella F (ed) Plants and heavy metals. Springer, Berlin, Germany, pp 55–74

    Google Scholar 

  • Fatemi H, Zaghdoud C, Nortes PA, Carvajal M, Martínez-Ballesta MDC (2020) Differential aquaporin response to distinct effects of two Zn concentrations after foliar application in Pak Choi (Brassica rapa L.) plants. Agronomy. https://doi.org/10.3390/agronomy10030450

    Article  Google Scholar 

  • Feigl G, Lehotai N, Molnár A, Ördög A, Rodríguez-Ruiz M, Palma JM, Kolbert Z (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625

    CAS  PubMed  Google Scholar 

  • Feigl G, Molnár A, Szőllősi R, Ördög A, Törőcsik K, Oláh D, Bodor A, Perei K, Kolbert Z (2019) Zinc-induced root architectural changes of rhizotron-grown B. napus correlate with a differential nitro-oxidative response. Nitric Oxide 90:55–65

    CAS  PubMed  Google Scholar 

  • Florez-Sarasa ID, Bouma TJ, Medrano H, Azcon-Bieto J, Ribas-Carbo M (2007) Contribution of the cytochrome and alternative pathways to growth, respiration and maintenance respiration in Arabidopsis thaliana. Physiol Plant 129:143–151

    CAS  Google Scholar 

  • Frérot H, Hautekèete NC, Decombeix I, Bouchet MH, Créach A, Saumitou-Laprade P, Piquot Y, Pauwels M (2018) Habitat heterogeneity in the pseudometallophyte Arabidopsis halleri and its structuring effect on natural variation of zinc and cadmium hyperaccumulation. Plant Soil 423:157–174

    Google Scholar 

  • Fu XZ, Zhou X, Xing F, Ling LL, Chun CP, Cao L, Aarts MGM, Peng LZ (2017) Genome-Wide identification, cloning and functional analysis of the Zinc/Iron-Regulated Transporter-Like Protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci 8(3):588

    PubMed  PubMed Central  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gai APC, Santos DS, Vieira EA (2017) Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthus impetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environ Exp Bot 144:88–89

    CAS  Google Scholar 

  • Garg N, Kaur H (2012) Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant 34:1363–1380

    CAS  Google Scholar 

  • Garg N, Kaur H (2013a) Impact of Cd-Zn interactions on metal uptake, translocation and yield in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal (AM) fungi. J Plant Nutr 36:67–90

    CAS  Google Scholar 

  • Garg N, Kaur H (2013b) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199:118–133

    CAS  Google Scholar 

  • Garg N, Singh S (2018) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    CAS  PubMed  Google Scholar 

  • Ghnaya AB, Hourmant A, Cerantola S, Karvarec N, Cabon JY, Branchard M, Charles G (2010) Influence of zinc on soluble carbohydrate and free amino acid levels in rapeseed plants regenerated in vitro in the presence of zinc. Plant Cell Tiss Organ Cult 102(2):191–197

    Google Scholar 

  • Gitto A, Fricke W (2018) Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. Physiol Plant 164:176–190

    CAS  PubMed  Google Scholar 

  • Glinska S, Gapinska M, Michlewska S, Skiba E, Kubicki J (2016) Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma 253:367–377

    CAS  PubMed  Google Scholar 

  • Gomes MP, Duarte DM, Carneiro MMLC, Barreto LC, Carvalho M, Soares AM, Guilherme LRG, Garciac QS (2013) Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiol Biochem 67:1–6

    CAS  PubMed  Google Scholar 

  • Goodarzi A, Namdjoyan S, Soorki AA (2020) Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicol Environ Saf 201:110853

    CAS  PubMed  Google Scholar 

  • Gupta N, Ram H, Kumar B (2016) Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Bio 15:89–109

    CAS  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57(6):1116–1127

    CAS  PubMed  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125(1):456–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition–a review. Am J Exp Agric 3(2):374–391

    CAS  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259

    CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    CAS  PubMed  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143(4):1705–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini Z, Poorakbar L (2013) Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH. J Stress Physiol Biochem 9:66–73

    Google Scholar 

  • Ibiang YB, Mitsumoto H, Kazunori S (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in Soybean (Glycine max (L.) Merr.) under excess zinc. Environ Exp Bot 137:1–13

    CAS  Google Scholar 

  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    CAS  PubMed  Google Scholar 

  • Ismail AM, Azooz MM (2005) Effect of zinc supply on growth and some metabolic characteristics of safflower and sunflower plants. Indian J Plant Physiol 10:260–266

    CAS  Google Scholar 

  • Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32:979–986

    CAS  Google Scholar 

  • Jain A, Sinilal B, Dhandapani G, Meagher RB, Sahi SV (2013) Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Environ Sci Technol 47:5327–5335

    CAS  PubMed  Google Scholar 

  • Jiang W, Struik PC, Keulen H, van Zhao M, Jin LN, Stomph TJ (2008) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153:135–147

    CAS  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397

    CAS  PubMed  Google Scholar 

  • Jones F, Bankiewicz D, Hupa M (2014) Occurrence and sources of zinc in fuels. Fuel 117:763–775

    CAS  Google Scholar 

  • Kanwal S, Bano A, Malik RN (2016) Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. Afr J Biotechnol 15(20):872–883

    CAS  Google Scholar 

  • Kaur H, Garg N (2017) Zinc-arbuscular mycorrhizal interactions: effect on nutrient pool, enzymatic antioxidants, and osmolyte synthesis in pigeonpea nodules subjected to Cd stress. Comm Soil Sci Plant Anal 48(14):1684–1700

    CAS  Google Scholar 

  • Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kherbani N, Abdi N, Lounici H (2015) Effect of cadmium and zinc on growing barley. J Environ Prot 6:160–172

    CAS  Google Scholar 

  • Kholodova V, Volkov K, Abdeyeva A, Kuznetsov V (2011) Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot 71:382–389

    CAS  Google Scholar 

  • Khudsar T, Mahmooduzzafar Iqbal M, Sairam RK (2004) Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Plant 48(2):255–260

    CAS  Google Scholar 

  • Khudsar T, Arshi A, Siddiqi TO, Mahmooduzzafar IM (2008) Zinc-induced changes in growth characters, foliar properties, and Zn-accumulation capacity of pigeonpea at different stages of plant growth. J Plant Nutr 31:281–306

    CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    CAS  PubMed  Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn (II) in Arabidopsis. Plant J 58(5):737–753

    CAS  PubMed  Google Scholar 

  • Kisko M, Bouain N, Rouached A, Choudhary SP, Rouached H (2015) Molecular mechanisms of phosphate and zinc signalling crosstalk in plants: phosphate and zinc loading into root xylem in Arabidopsis. Environ Exp Bot 114:57–64

    CAS  Google Scholar 

  • Koleva L, Semerdjieva I, Nikolova A, Vassilev A (2010) Comparative morphological and histological study of zinc-and cadmium-treated durum wheat plants with similar growth inhibition. Gen Appl Plant Physiol 36:8–11

    CAS  Google Scholar 

  • Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, Paterson DJ, Howard DL, Ryan CG, Glover CJ, Scheckel KG, Lombi E (2011) In situ distribution and speciation of toxic Cu, Ni and Zn in hydrated roots of cowpea. Plant Physiol 156:663–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosesakal T, Unal M, Oz GC (2009) Influence of zinc toxicity on gravitropic response of tomato (Lycopersicon esculentum Mill.) roots. Fresenius Environ Bull 18(12):2402–2407

    CAS  Google Scholar 

  • Kozak K, Papierniak A, Barabasz A, Kendziorek M, Palusinska M, Williams LE, Antosiewicz DM (2019) NtZIP11, a new Zn transporter specifically upregulated in tobacco leaves by toxic Zn level. Environ Exp Bot 157:69–78

    CAS  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    PubMed  Google Scholar 

  • Krishnan S, Dayanandan P (2003) Structural and histochemical studies on grain-filling in the caryopsis of rice (Oryza sativa L.). J Biosci 28:455–469

    CAS  PubMed  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    CAS  Google Scholar 

  • Lefèvre I, Vogel-Mikuš K, Jeromel L, Vavpetic P, Planchon S, Arcon I, Van Elteren JT, Lepoint G, Gobert S, Renaut J, Pelicon P, Lutts S (2014) Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ 37:1299–1320

    PubMed  Google Scholar 

  • Lešková A, Giehl RFH, Hartmann A, Fargašova A, Wirén NV (2017) Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol 174:1648–1668

    PubMed  PubMed Central  Google Scholar 

  • Leuci R, Brunetti L, Laghezza A, Loiodice F, Tortorella P, Piemontese L (2020) Importance of biometals as targets in medicinal chemistry: An overview about the role of Zinc (II) chelating agents. Appl Sci 10:4118

    CAS  Google Scholar 

  • Li X, Yang Y, Zhang J, Jia L, Li Q, Zhang T, Qiao K, Ma S (2012) Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicol Environ Saf 86:196–203

    Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013a) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    CAS  PubMed  Google Scholar 

  • Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R (2013b) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol 13:114

    PubMed  PubMed Central  Google Scholar 

  • Li S, Zhou X, Zhao Y, Li H, Liu Y, Zhu L, Guo J, Huang Y, Yang W, Fan Y, Chen J, Chen R (2016) Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content. Plant Physiol Biochem 106:1–10

    CAS  PubMed  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    CAS  PubMed  Google Scholar 

  • Lin Y-F, Liang H-M, Yang S-Y, Boch A, Clemens S, Chen C-C, Wu J-F, Huang J-L, Yeh K-C (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404

    CAS  PubMed  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS ONE 11:e0149750

    PubMed  PubMed Central  Google Scholar 

  • Lira-Morales JD, Varela-Bojórquez N, Montoya-Rojo MB, Sañudo-Barajas JA (2019) The role of ZIP proteins in zinc assimilation and distribution in plants: current challenges. Czech J Genet Plant Breed 55(2):45–54

    CAS  Google Scholar 

  • Liu D, Chen J, Mahmood Q, Liu D, Chen J, Mahmood Q, Li S, Wu J, Ye Z, Peng D, Yan W, Lu K (2014) Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environ Sci Pollut Res 21:13615–13624

    CAS  Google Scholar 

  • Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19:283

    PubMed  PubMed Central  Google Scholar 

  • Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Stoffella JP (2003) Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun Soil Sci Plant Anal 34:1421–1434

    CAS  Google Scholar 

  • Lu L, Liao X, Labavitch J, Yang X, Nelson E, Du Y, Brown PH, Tian S (2014) Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X ray absorption fine structure and micro-X-ray fluorescence. Plant Physiol Biochem 84:224–232

    CAS  PubMed  Google Scholar 

  • Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240

    PubMed  PubMed Central  Google Scholar 

  • Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9:3766–3780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marichali A, Dallali S, Ouerghemmi S, Sebeia H, Hosni K (2014) Germination, morpho-physiological and biochemical responses of coriander (Coriandrum sativum L.) to zinc excess. Ind Crop Prod 55:248–257

    CAS  Google Scholar 

  • Marschner P (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Martinoia E (2018) Vacuolar transporters—companions on a longtime journey. Plant Physiol 176:1384–1407

    CAS  PubMed  Google Scholar 

  • Michael PI, Krishnaswamy M (2011) The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings. Environ Exp Bot 74:171–177

    CAS  Google Scholar 

  • Miller G, Shulaev V, Mitter R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    CAS  PubMed  Google Scholar 

  • Milner MJ, Craft E, Yamaji N, Koyama E, Ma JF, Kochian LV (2012) Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytol 195:113–123

    CAS  PubMed  Google Scholar 

  • Mir BA, Khan TA, Fariduddin Q (2015) 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int J Adv Res 3(5):592–608

    CAS  Google Scholar 

  • Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, François IE, Cammue BP, Lebrun M, Berthomieu P, Marquès L (2006) A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J 47:329–342

    CAS  PubMed  Google Scholar 

  • Mishra PK, Parkash V (2010) Response of non-enzymatic antioxidants to zinc induced stress at different pH in Glycine max. L. cv. Merrill. Acad J Plant Sci 3(1):1–10

    Google Scholar 

  • Mishra S, Mishra A, Küpper H (2017) Protein biochemistry and expression regulation of cadmium/zinc pumping ATPases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Front Plant Sci 8:835

    PubMed  PubMed Central  Google Scholar 

  • Misra A, Srivastav AK, Srivastava NK, Khan A (2005) Zn-acquisition and its role in growth, photosynthesis, photosynthetic pigments and biochemical changes in essential monoterpene oil(s) of Pelargonium graveolens. Phtosynthetica 43:153–155

    CAS  Google Scholar 

  • Monsant AC, Kappen P, Wang Y, Pigram PJ, Baker AJM, Tang C (2011) In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure. Plant Soil 348:167–183

    CAS  Google Scholar 

  • Moreira A, Moraes LA, dos Reis AR (2018) The molecular genetics of zinc uptake and utilization effciency in crop plants. In: Hossain MA, Kamiya T, Burritt DJ, Tran L-SP, Fujiwara T (eds) Plant micronutrient use efficiency. Elsevier, Amsterdam, The Netherlands, pp 87–108

    Google Scholar 

  • Neeraja CN, Kulkarni KS, Babu PM, Rao DS, Surekha K, Babu VR (2018) Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification. PLoS ONE 13(2):e0192362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nejad RH, Najafi F, Arvin P, Firuzeh R (2014) Study different levels of zinc sulphate (ZnSO4) on fresh and dry weight, leaf area, relative water content and total protein in bean (Phaseolus vulgaris L.) plant. Bull Env Pharmacol Life Sci 3(6):144–151

    Google Scholar 

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem in Med Biol 49:252–260

    CAS  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2015) The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem 290:27688–27699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oladele EO, Odeigah PGC, Taiwo IA (2013) The genotoxic effect of lead and zinc on bambara groundnut (Vigna subterranean). Afr J Environ Sci Technol 7(1):9–13

    CAS  Google Scholar 

  • Oomen RJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MG, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    CAS  PubMed  Google Scholar 

  • Ouni Y, Mateos-Naranjo E, Abdelly C, Lakhdar R (2016) Interactive effect of salinity and zinc stress on growth and photosynthetic responses of the perennial grass, Polypogon monspeliensis. Ecol Eng 95:171–179

    Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Cakmak SZI (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    CAS  Google Scholar 

  • Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341

    CAS  PubMed  Google Scholar 

  • Pan W, You Y, Weng Y-N, Shentu J-L, Lu Q, Xu Q-R, Liu H-J, Du S-T (2020) Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants. Ecotoxicol Environ Saf 190:110104

    CAS  PubMed  Google Scholar 

  • Paradisone V, Barrameda-Medina Y, Montesinos-Pereira D, Romer L, Esposito S, Ruiz JM (2015) Roles of some nitrogenous compounds protectors in the resistance to zinc toxicity in Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. Acta Physiol Plant 37:137

    Google Scholar 

  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19:787

    PubMed Central  Google Scholar 

  • Pavithra GJ, Mahesh S, Parvathi MS, Basavarajeshwari RM, Nataraja KN, Shankar AG (2016) Comparative growth responses and transcript profiling of zinc transporters in two tomato varieties under different zinc treatments. Indian J Plant Physiol 21:208–212

    Google Scholar 

  • Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-gross H, Zhao R, Conley CJ, Distelfeld A, Dubcovksy A (2014) Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol 14:1–23

    Google Scholar 

  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8:e1003120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piñeros M, Kochian L (2003) Differences in whole-cell and single channel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species. Plant Physiol 131:583–594

    PubMed  PubMed Central  Google Scholar 

  • Pita-Barbosa A, Ricachenevsky FK, Wilson M, Dottorini T, Salt DE (2019) Transcriptional plasticity buffers genetic variation in zinc homeostasis. Sci Reports 9:19482

    CAS  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    CAS  PubMed  Google Scholar 

  • Pramanick P, Chakraborty A, Raychaudhuri SS (2017) Phenotypic and biochemical alterations in relation to MT2 gene expression in Plantago ovata Forsk under zinc stress. Biometals 30:171–184

    CAS  PubMed  Google Scholar 

  • Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through phytosiderophore secretion: a modelling study. Plant Cell Environ 34:2038–2046

    CAS  PubMed  Google Scholar 

  • Ramakrishna B, Rao SSR (2014) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252(2):665–677

    PubMed  Google Scholar 

  • Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Correia IS, Duque P (2013) A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25:901–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Hussein MAM, Teixeira MC, Athanasiadis A, Correia IS, Duque P (2014) Intron retention in the 5’UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in Arabidopsis. PLoS Genet 5:e1004375

    Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Correia IS, Duque P (2015) The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis. Plant Cell Physiol 56(1):148–162

    CAS  PubMed  Google Scholar 

  • Ricachenevsky FK, Sperotto RA, Menguer PK, Sperb ER, Lopes KL, Fett JP (2011) ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol 11:20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricachenevsky FK, Punshon T, Lee S, Oliveira BHN, Trenz TS, Maraschin FS, Hindt MN, Danku J, Salt DE, Fett JP, Guerinot ML (2018) Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7. Front Plant Sci 9:865

    PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Colla G, Bernardo L, Kane D, Trevisan M, Lucini L (2016) Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. Front Plant Sci 7:842

    PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssisch IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    CAS  PubMed  Google Scholar 

  • Sagardoy R, Morales F, Lopez-Millan AF, Abadia A, Abadia J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339–350

    CAS  PubMed  Google Scholar 

  • Sagardoy R, Morales F, Rellan-Alvarez R, Abadia A, Abadia J, Lopez-Millan AF (2011) Carboxylate metabolism in sugar beet plants grown with excess Zn. J Plant Physiol 168:730–733

    CAS  PubMed  Google Scholar 

  • Sarret G, Harada E, Choi Y, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Menceau A, Saumitou-Laprede P (2009) Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol 184:581–595

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF (2015) A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84:374–384

    CAS  PubMed  Google Scholar 

  • Sbartai H, Djebar MR, Rouabhi R, Sbartai I, Berrebbah H (2011) Antioxidative responses in tomato plants Lycopersicon esculentum L. roots and leaves to zinc. Am Eurasian J Toxicol Sci 3(1):41–46

    Google Scholar 

  • Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S (2013) A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer Plant J 73:131–142

    CAS  PubMed  Google Scholar 

  • Shahzad Z, Gostil F, Ferot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010) The Five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6(4):e1000911

    PubMed  PubMed Central  Google Scholar 

  • Shahzad Z, Ranwez V, Fizames C, Marquès L, Le Martret B, Alassimone J, Godé C, Lacombe E, Castillo T, Saumitou-Laprade P, Berthomieu P, Gosti F (2013) Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. New Phytol 200:820–833

    CAS  PubMed  Google Scholar 

  • Shanmugam V, Lo JC, Yeh KC (2013) Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front Plant Sci 4:281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Sharma P, Datta SP, Gupta V (2009) Morphological and biochemical response of Cicer arietinum var. Pusa-256 towards an excess of zinc concentration. Life Sci J 7(1):95–98

    Google Scholar 

  • Sharma S, Kaur G, Kumar A, Meena V, Kaur J, Pandey AK (2019) Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol Biol 20:22

    PubMed  PubMed Central  Google Scholar 

  • Siddiqui MF, Bano B (2019) Probing the binding interaction of zinc and cadmium with garlic phytocystatin: implication of the abiotic stress on garlic phytocystatin. Int J Biol Macromol 133:945–956

    CAS  PubMed  Google Scholar 

  • Sidhu GPS (2016) Physiological, biochemical and molecular mechanisms of zinc uptake, toxicity and tolerance in plants. J Global Biosci 5:4603–4633

    Google Scholar 

  • Šimon M, Shen ZJ, Ghoto K, Chen J, Liu X, Gao G-F, Kokalj AJ, Novak S, Drašler B, Zhang J-Y, You Y-P, Drobn D, Zheng H-L (2021) Proteomic investigation of Zn-challenged rice roots reveals adverse effects and root physiological adaptation. Plant Soil 460:69–88

    Google Scholar 

  • Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticum aestivum L.) plant. Ecol Eng 116:163–167

    Google Scholar 

  • Sofo A, Moreira I, Gattullo CE, Martins LL, Mourato M (2018) Antioxidant responses of edible and model plant species subjected to subtoxic zinc concentrations. J Plant Physiol 216:174–180

    Google Scholar 

  • Solanki R, Poonam A, Dhankar R (2011) Zinc and copper induced changes in physiological characteristics of Vigna mungo (L.). J Environ Biol 32:747–751

    CAS  PubMed  Google Scholar 

  • Song FN, Yang CP, Liu LXMGB (2006) Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus primula L. J Res 17:13–16

    CAS  Google Scholar 

  • Song WY, Choi KS, Kim DY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song A, Li P, Li Z, Fan F, Nikolic M, Lian Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333

    CAS  Google Scholar 

  • Souza SCR, Souza LA, Schiavinato MA, de Oliveira Silva FM, de Andrade SAL (2020) Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Saf 195:110450

    CAS  PubMed  Google Scholar 

  • Spielmann J, Ahmadi H, Scheepers M, Weber M, Nitsche S, Carnol M, Bosman B, Kroymann J, Motte P, Clemens S, Hanikenne M (2020) The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. Plant Cell Environ 43:2143–2157

    CAS  PubMed  Google Scholar 

  • Stacey SP, McLaughlin MJ, Cakmak I, Hetitiarachchi GM, Scheckel KG, Karkkainen M (2008) Root uptake of lipophilic zinc-rhamnolipid complexes. J Agric Food Chem 56:2112–2117

    CAS  PubMed  Google Scholar 

  • Stephens BW, Cook DR, Grusa MA (2011) Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula. Biometals 24:51–58

    CAS  PubMed  Google Scholar 

  • Stoláriková-Vaculíkováa M, Romeo S, Minnocci A, Luxová M, Vaculík M, Lux A, Sebastiani L (2015) Anatomical, biochemical and morphological responses of poplar Populus deltoides clone Lux to Zn excess. Environ Exp Bot 109:235–243

    Google Scholar 

  • Straczek A, Sarret G, Manceau A, Hinsinger P, Geoffroy N, Jaillard B (2008) Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environ Exp Bot 63:80–90

    CAS  Google Scholar 

  • Stuiver CEE, Posthumus FS, Parmar S, Shahbaz M, Hawkesford MJ, Kok LJD (2014) Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. J Plant Nutr Soil Sci 177:748–757

    CAS  Google Scholar 

  • Subba P, Mukhopadhyay M, Mahato SK, Bhutia KD, Mondal TK, Ghosh SK (2014) Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol Mol Biol Plants 20(4):461–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Nie Y, Gao Y, Dai A, Bai J (2012) Exogenous cinnamic acid regulates antioxidant enzyme and reduces lipid peroxidation in drought stressed cucumber leaves. Acta Physiol Plant 34:641–655

    CAS  Google Scholar 

  • Suzuki M, Takahshi M, Tsukamoto T, Watanabe S, Matsuhashi S, Nankanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugneic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    CAS  PubMed  Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szopinski M, Sitko K, Gieron Z, Rusinowski S, Corso M, Hermans C, Verbruggen N, Małkowski E (2019) Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front Plant Sci 10:748

    PubMed  PubMed Central  Google Scholar 

  • Talke IN, Hanikenne M, Kramer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Qu M, Zhu Y, Peng C, Wang J, Gao D, Chen C (2020) ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol 183:1235–1249

    CAS  PubMed  Google Scholar 

  • Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture micro dissection and gene expression profiling. J Exp Bot 60:1333–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sci 171:286–294

    CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126

    CAS  PubMed  Google Scholar 

  • Tiecher TL, Tiecher T, Ceretta CA, Ferreira PAA, Nicoloso FT, Soriani HH, De Conti L, Kulmann MSS, Schneider RO, Brunetto G (2017) Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Sci Hortic 222:203–212

    CAS  Google Scholar 

  • Tiong J, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY (2014) HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol 201:131–143

    CAS  PubMed  Google Scholar 

  • Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207:1097–1109

    CAS  PubMed  Google Scholar 

  • Tripathy BC, Pattanayak GK (2012) Chlorophyll biosynthesis in higher plants. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: advances in photosynthesis and respiration. Springer, Dordrecht, pp 63–94

    Google Scholar 

  • Tsednee M, Huang YC, Chen YR, Yeh KC (2016) Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Sci Rep 6:26785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsonev T, Lidon FJC (2012) Zinc in plants—an overview. Emir J Food Agric 24(4):322–333

    Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to zinc stress. Chemosphere 59:1005–1013

    CAS  PubMed  Google Scholar 

  • Van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    PubMed  PubMed Central  Google Scholar 

  • Vassilev A, Perez-Sanz A, Cuypers A, Vangronsveld (2007) Tolerance of two hydroponically grown salix genotypes to excess zinc. J Plant Nutr 30:1471–1482

    CAS  Google Scholar 

  • Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosynthetic performance of young bean plants. J Plant Phytol 3(6):58–62

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  PubMed  Google Scholar 

  • Vijayarengan P, Mahalakshmi G (2013) Zinc toxicity in tomato plants. World Appl Sci J 24:649–653

    Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, de Jonge MD, Donner E, Blamey FPC, Ryan CG, Paterson DJ, Howard DL, James SA, Kopittke PM (2013) Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Sci Total Environ 463–464:131–139

    PubMed  Google Scholar 

  • Wang X, Zhao L, Zhang L, Wu Y, Chou M, Wei G (2018) Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution. Lett Appl Microbiol 67(1):22–31

    CAS  PubMed  Google Scholar 

  • Wang Y, Yang J, Miao R, Kang Y, Qi Z (2021) A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. J Plant Physiol 256:153296

    CAS  PubMed  Google Scholar 

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179:1033–1047

    CAS  PubMed  Google Scholar 

  • Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141(4):1446–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    CAS  PubMed  Google Scholar 

  • Weremczuk A, Ruszczyńska A, Bulska E, Antosiewicz DM (2017) NO-Dependent programed cell death is involved in the formation of Zn-related lesion in tobacco leaves. Metallomics 9:924–935

    CAS  PubMed  Google Scholar 

  • Weremczuk A, Papierniak A, Kozak K, Willats WGT, Antosiewicz DM (2020) Contribution of NtZIP1-like, NtZIP11 and a WAK-pectin based mechanism to the formation of Zn-related lesions in tobacco leaves. Env Exp Bot 176:104074

    CAS  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:199–211

    Google Scholar 

  • Widodo BMR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol 186:400–414

    PubMed  Google Scholar 

  • Xuan Y, Scheuermann EB, Meda AR, Hayen H, Von Wiren N, Weber G (2006) Separation and identification of phytosiderophores and their metal complexes in plants by zwitterionic hydrophilic interaction liquid chromatography coupled to electrospray ionization mass spectrometry. J Chromatogr A 1136:73–81

    CAS  PubMed  Google Scholar 

  • Yahaghi Z, Shirvani M, Nourbakhsh F, Pueyo JJ (2019) Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S Afr J Bot 124:573–582

    CAS  Google Scholar 

  • Yang Y, Sun C, Yao Y, Zhang Y, Achal V (2011) Growth and physiological responses of grape (Vitis vinifera “Combier”) to excess zinc. Acta Physiol Plant 33:1483–1491

    Google Scholar 

  • Yang HF, Zhang J, Li JL (2012) Physiological response to zinc pollution of rape (Brassica chinensis L.) in paddy soil ecosystem. Adv Mater Res 356–360:39–43

    Google Scholar 

  • Yang Q, Ma X, Luo S, Gao J, Yang X, Feng Y (2018) SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance. Environ Exp Bot 155:107–117

    CAS  Google Scholar 

  • Yoneyama T, Ishikawa S, Fujimaki S (2015) Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int J Mol Sci 16:19111–19129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Watanabe CK, Terashima I, Noguchi K (2011) Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Environ 34:1890–1899

    CAS  PubMed  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3:111–122

    Google Scholar 

  • Youssef MM, Azooz MM (2013) Biochemical studies on the effects of zinc and lead on oxidative stress, antioxidant enzymes and lipid peroxidation in okra (Hibiscus esculentus cv. Hassawi). Sci Int 1(3):29–38

    Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Ding Z, Wang H, Song L, Jia S, Ma D (2017) Zinc stress affects ionome and metabolome in tea plants. Plant Physiol Biochem 111:318–328

    CAS  PubMed  Google Scholar 

  • Zhang P, Sun L, Qin J, Wan J, Wang R, Li S, Xu J (2018) cGMP is involved in Zn tolerance through the modulation of auxin redistribution in root tips. Environ Exp Bot 147:22–30

    CAS  Google Scholar 

  • Zhang H, Yang J, Li W, Chen Y, Lu H, Zhao S, Li D, Wei M, Li C (2019) PuHSFA4a enhances tolerance to excess zinc by regulating reactive oxygen species production and root development in Populus. Plant Physiol 180:2254–2271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwiesche W, Barth O, Daniel K, Böhme S, Rauschke J, Humbeck K (2015) The zinc-binding protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol 207:1084–1096

    Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Biotechnology, Government of India, New Delhi, India [Grant Number 42-945/2013(SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Garg, N. Zinc toxicity in plants: a review. Planta 253, 129 (2021). https://doi.org/10.1007/s00425-021-03642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03642-z

Keywords

Navigation