Skip to main content
Log in

Activation of Rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification

  • Published:
Molecules and Cells

Abstract

Because micronutrients in human diets ultimately come from plant sources, malnutrition of essential minerals is a significant public health concern. By increasing the expression of nicotianamine synthase (NAS), we fortified the level of bioavailable iron in rice seeds. Activation of iron deficiency-inducible OsNAS2 resulted in a rise in Fe content (3.0-fold) in mature seeds. Its ectopic expression also increased that content. Enhanced expression led to higher tolerance of Fe deficiency and better growth under elevated pH. Mice fed with OsNAS2-D1 seeds recovered more rapidly from anemia, indicating that bioavailable Fe contents were improved by this increase in OsNAS2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24. 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Arosio, P., Ingrassia, R., and Cavadini, P. (2009). Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 1790, 589–599.

    Article  PubMed  CAS  Google Scholar 

  • Briat, J.F. (2007). Iron dynamics in plants. Adv. Bot. Res. 46, 137–180

    Article  Google Scholar 

  • Douchkov, D., Gryczka, C., Stephan, U.W., Hell, R., and Baumlein, H. (2005). Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ. 28, 365–374.

    Article  CAS  Google Scholar 

  • Gómez-Galera, S., Rojas, E., Sudhakar, D., Zhu, C., Pelacho, A.M., Capell, T., and Christou, P. (2010). Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 19, 165–180.

    Article  PubMed  Google Scholar 

  • Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., and Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17, 282–286.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, P.M., and Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203.

    Article  PubMed  Google Scholar 

  • Hayashi, A., and Kimoto, K. (2007). Nicotianamine preferentially inhibits Angiotensin I-converting enzyme. J. Nutr. Sci. Vitaminol. 53, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Hell, R., and Stephan, U.W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta 216, 541–551.

    PubMed  CAS  Google Scholar 

  • Higuchi, K., Kanazawa, K., Nishizawa, N.K., Chino, M., and Mori, S. (1994). Purification and characterization of nicotianamine synthase from Fe deficient barley roots. Plant Soil 165, 173–179.

    Article  CAS  Google Scholar 

  • Hoppler, M., Schönbächler, A., Meile, L., Hurrell, R.F., and Walczyk, T. (2008). Ferritin-iron is released during boiling and in vitro gastric digestion. J. Nutr. 138, 878–884

    PubMed  CAS  Google Scholar 

  • Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2003). Three rice nicotianamine synthase genes, OsNAS1, OsNAS2 and OsNAS3, are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J. 36, 366–381.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 284, 3470–3479.

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., et al. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 45, 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru, Y., Kim, S., Tsukamoto, T., Oki, H., Kobayashi, T., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., et al. (2007). Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl. Acad. Sci. USA 104, 7373–7378.

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R., et al. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 62, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, J.S., Jung, K.H., Kim, H.-B., Suh, J.-P., and Khush, G.S. (2011). Genetic and molecular insights into the enhancement of rice yield potential. J. Plant Biol. 54, 1–9.

    Article  Google Scholar 

  • Kobayashi, T., Nakanishi, H., Takahashi, M., Mori, S., and Nishizawa, N.K. (2008). Generation and field trials of transgenic rice tolerant to iron deficiency. Rice 1, 144–153.

    Article  Google Scholar 

  • Lee, S., and An, G. (2009). Overexpression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Chiecko, J.C., Kim, S.A., Walker, E.L., Lee, Y., Guerinot, M.L., and An, G. (2009a). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150, 786–800.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Jeon, U.S., Lee, S.J., Kim, Y.K., Persson, D.P., Husted, S., Schjørring, J.K., Kakei, Y., Masuda, H., Nishizawa, N.K., et al. (2009b). IIron fortification of rice through activation of the nicotianamine synthase gene. Proc. Natl. Acad. Sci. USA 106, 22014–22019.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Persson, D.P., Hansen, T.H., Husted, S., Schjørring, J.K., Kim, Y.-S., Jeon, U.S., Kim, Y.K., Kakei, Y., Masuda, H., et al. (2011). Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J. 9, 865–873.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, H., Usuda, K., Kobayashi, T., Ishimaru, Y., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2009). Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2, 155–166.

    Article  Google Scholar 

  • Mayer, J.E., Pfeiffer, W.H., and Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 11, 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Ramesh, S.A., Choimes, S., and Schachtman, D.P. (2004). Overexpression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol. Biol. 54, 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Stein, A.J. (2010). Global impact of human mineral malnutrition. Plant Soil 335, 133–154.

    Article  CAS  Google Scholar 

  • Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N.K., and Mori, S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol. 19, 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Usuda, K., Wada, Y., Ishimaru, Y., Kobayashi, T., Takahashi, M., Nakanishi, H., Nagato, Y., Mori, S., and Nishizawa, N.K. (2009). Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol. J. 71, 87–95.

    Article  Google Scholar 

  • Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F., and Datta, S.K. (2003). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164, 371–378.

    Article  CAS  Google Scholar 

  • Wirth, J., Poletti, S., Aeschlimann, B., Yakandawala, N., Drosse, B., Osorio, S., Tohge, T., Fernie, A.R., Günther, D., Gruissem, W., et al. (2009). Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol. J. 7, 631–644.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, F.-J., and Shewry, P.R. (2011). Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 36, S94–S101.

    Article  Google Scholar 

  • Zheng, L., Cheng, Z., Ai, C., Jiang, X., Bei, X., Zheng, Y., Glahn, R.P., Welch, R.M., Miller, D.D., Lei, X.G., et al. (2010). Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5, e10190.

    Article  PubMed  Google Scholar 

  • Zhu, C., Naqvi, S., Gomez-Galera, S., Pelacho, A.M., Capell, T., and Christou, P. (2007). Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 12, 548–555.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gynheung An.

About this article

Cite this article

Lee, S., Kim, YS., Jeon, U.S. et al. Activation of Rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33, 269–275 (2012). https://doi.org/10.1007/s10059-012-2231-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2231-3

Keywords

Navigation