Skip to main content
Log in

OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alam S, Kamei S, Kawai S (2001) Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soilci Plant Nutr 47:643–649

    CAS  Google Scholar 

  • Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2009) OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681–692

    Article  PubMed  CAS  Google Scholar 

  • Arulanantham AR, Rao IM, Terry N (1990) Limiting factors in photosynthesis: VI. Regeneration of ribulose 1,5-bisphosphate limits photosynthesis at low photochemical capacity. Plant Physiol 93:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    Article  PubMed  CAS  Google Scholar 

  • Becker R, Fritz E, Manteuffel R (1995) Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiol 108:269–275

    PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA, Dellapenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Ann Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA 104:7373–7378

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  PubMed  CAS  Google Scholar 

  • Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK (2009) A highly sensitive, quick and simple quantification method for nicotianamine and 2′-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol 50:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36:780–793

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakayama Y, Takahashi M, Inoue H, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2004) Construction of artificial promoters highly responsive to iron deficiency. Soilci Plant Nutr 50:1167–1175

    CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is coordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci USA 104:19150–19155

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60:948–961

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ogo Y, Aung MS, Nozoye T, Itai RN, Nakanishi H, Yamakawa T, Nishizawa NK (2010) The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Annals Bot 105:1109–1117

    Article  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Matsuo T, Hoshikawa K (1993) Science of the rice plant, vol 1 morphology. Food and Agriculture Policy Research Center, Tokyo

  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997

    Article  PubMed  CAS  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opi Plant Biol 2:250–253

    Article  CAS  Google Scholar 

  • Mori S, Nishizawa N (1987) Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol 28:1081–1092

    CAS  Google Scholar 

  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron-deficiency. Plant Soil 130:143–156

    Article  CAS  Google Scholar 

  • Morikawa CK, Saigusa M, Nakanishi H, Nishizawa NK, Hasegawa K, Mori S (2004) Co-situs application of controlled-release fertilizers to alleviate iron chlorosis of Paddy rice grown in calcareous soil. Soil Sci Plant Nutr 50:1013–1021

    CAS  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J 46:563–572

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Okukmura N, Umehara Y, Nishizawa NK, Chino M, Mori S (1993) Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Plant Cell Physiol 34:401–410

    PubMed  CAS  Google Scholar 

  • Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2007) The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol 64:35–47

    Article  PubMed  CAS  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2010) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem. doi:10.1074/jbc.M110.180026

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    Article  PubMed  CAS  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377

    Article  PubMed  CAS  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Nishizawa NK, Umehara Y, Ohta T, Nakanishi H, Yamaguchi H, Chino M, Mori S (1994) A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol Biol 25:705–719

    Article  PubMed  CAS  Google Scholar 

  • Prescott A, Martin C (1987) A rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol Biol Report 4:219–224

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophore in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  Google Scholar 

  • Shojima S, Nishizawa NK, Mori S (1989) Establishment of a cell-free system for the biosynthesis of nicotianamine. Plant Cell Physiol 30:673–677

    CAS  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from l-methionine and nicotianamine. Plant Physiol 93:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plantarum 88:522–529

    Article  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  PubMed  CAS  Google Scholar 

  • Takagi S (1976) Naturally occuring iron-chelating compounds in oat- and rice-root washing. I. Activity measurement and preliminary characterization. Soilci Plant Nutr 22:423–433

    CAS  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soil using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Tsunoda K, Inoue H, Koike S, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of nicotianamine synthase genes, nicotianamine aminotransferase genes, and OsYSL2 in the reproductive stages. Plant nutrition for food security, human health and environmental protection 136–137

  • Takaiwa F, Kikuchi S, Oono K (1987) A rice glutelin family—a major type of glutelin mRNAs can be devised into two classes. Mol Gen Genet 208:15–22

    Article  CAS  Google Scholar 

  • Winder TL, Nishio JN (1995) Early iron deficiency stress response in leaves of sugar beet. Plant Physiol 108:1487–1494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko K. Nishizawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogo, Y., Itai, R.N., Kobayashi, T. et al. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75, 593–605 (2011). https://doi.org/10.1007/s11103-011-9752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9752-6

Keywords

Navigation