Skip to main content

Microbial and Bioinformatics Approach in Biofuel Production

  • Chapter
  • First Online:
Bioenergy Research: Basic and Advanced Concepts

Abstract

Due to the increasing world population and ever developing technology, the need and demand for energy are increasing day by day. In parallel with this, the tendency to use renewable alternative energy sources instead of limited fossil fuel reserves is increasing worldwide. Lignocellulosic biomasses which are abundant in nature with renewable energy potential are preferred in biofuel production. These raw biomaterials are transformed into forms that can be used in biofuel production processes by various pretreatment techniques. The physical and chemical methods commonly used in the pretreatment of the substrate have some limitations. However, microbial methods for hydrolysis of biomass are quite remarkable. In this study, we focused on the pretreatment of biomass and microbial enzymes used in biofuel production process.

Furthermore, due to the increasing applications of molecular interaction simulations in this field, at a small scale, we demonstrate how the molecular docking technique is able to reveal the interactions between the xylanase enzyme (both wild type and mutant) isolated from Thermotoga petrophila RKU-1 and its substrate, xylobiose. In conclusion, molecular interaction simulations (molecular docking and molecular dynamics) contribute to the fields of bioengineering and genetics as powerful bioinformatics tools and offer a unique opportunity to study, at the atomic level, how enzyme-substrate affinity change as a result of induced mutations in the protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abada EA, Masrahi YS, Al-Abboud M, Alnashiri HM, El-Gayar KE (2018) Bioethanol production with cellulase enzyme from Bacillus cereus isolated from sesame seed residue from the Jazan region. Bioresources 13(2):3832–3845

    Article  CAS  Google Scholar 

  • Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. In: Advances in applied microbiology, vol 82. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Abdullah JJ, Greetham D, Du C, Tucker GA (2020) Viability of municipal solid waste as a source for bioenergy products production. Int J Environ Agric Biotechnol 5(2):1767

    Google Scholar 

  • Achinas S, Willem Euverink GJ (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 19(5):44–53

    Article  Google Scholar 

  • Adsul M, Sandhu SK, Singhania RR, Gupta R, Puri SK, Mathur A (2020) Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzym Microb Technol 133:109442

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  Google Scholar 

  • Agrawal R, Semwal S, Kumar R, Mathur A, Gupta RP, Tuli DK, Satlewal A (2018) Synergistic enzyme cocktail to enhance hydrolysis of steam exploded wheat straw at pilot scale. Front Energy Res 6:122

    Article  Google Scholar 

  • Alcalde M (2007) Laccases: biological functions, molecular structure and industrial applications. In: Industrial enzymes. Springer, Dordrecht, pp 461–476

    Chapter  Google Scholar 

  • Althuri A, Gujjala LKS, Banerjee R (2017) Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresour Technol 245:530–539

    Article  CAS  Google Scholar 

  • Alvarez MM, Pérez-Carrillo E, Serna-Saldívar SO (2010) Effect of decortication and protease treatment on the kinetics of liquefaction, saccharification, and ethanol production from sorghum. J Chem Technol Biotechnol 85(8):1122–1129

    Article  CAS  Google Scholar 

  • Álvarez C, Reyes-Sosa FM, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 9(2):149–156

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  • Amoozegar MA, Safarpour A, Akbari Noghabi K, Bakhtiary T, Ventosa A (2019) Halophiles and their vast potential in biofuel production. Front Microbiol 10:1895

    Article  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):1–11

    Article  CAS  Google Scholar 

  • Arifeen N, Kookos IK, Wang R, Koutinas AA, Webb C (2009) Development of novel wheat biorefining: effect of gluten extraction from wheat on bioethanol production. Biochem Eng J 43(2):113–121

    Article  CAS  Google Scholar 

  • Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeterior Biodegradation 61(2):189–193

    Article  CAS  Google Scholar 

  • Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod 44:488–495

    Article  CAS  Google Scholar 

  • Asha R, Niyonzima F, Sunil S (2013) Purification and properties of pullulanase from Bacillus halodurans. Int Res J Biol Sci 2(3):35–43

    Google Scholar 

  • Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S (2013) Recovery of glucose from residual starch of sago hampas for bioethanol production. Biomed Res Int 2013:1–8

    Article  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270

    Article  CAS  Google Scholar 

  • Bala A, Singh B (2019) Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy 130:12–24

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  CAS  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31(8–9):871–888

    Article  CAS  Google Scholar 

  • Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM (1999) An endoglucanase, EglA, from the hyperthermophilic Archaeon Pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1→ 3),(1→ 4)-β-D-glucans and cellulose. J Bacteriol 181(1):284–290

    Article  CAS  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134(2):890–892

    Article  CAS  Google Scholar 

  • Begemann MB, Mormile MR, Paul VG, Vidt DJ (2011) Potential enhancement of biofuel production through enzymatic biomass degradation activity and biodiesel production by halophilic microorganisms. In: Halophiles and hypersaline environments. Springer, Berlin, pp 341–357

    Chapter  Google Scholar 

  • Bégum P, Lemaire M (1996) The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol 31(3):201–236

    Article  Google Scholar 

  • Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8(1):90

    Article  CAS  Google Scholar 

  • Bertoldo C, Antranikian G (2001) Amylolytic enzymes from hyperthermophiles. In: Methods in enzymology, vol 330. Elsevier, Amsterdam, pp 269–290

    Google Scholar 

  • Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6(2):151–160

    Article  CAS  Google Scholar 

  • Bhari R, Singh RS (2016) Novel enzymes in biofuel production. In: Biofuels: production and future perspectives. Taylor & Francis, London, p 461

    Google Scholar 

  • Bhatia Y, Mishra S, Bisaria V (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22(4):375–407

    Article  CAS  Google Scholar 

  • Bhatia SK, Kim S-H, Yoon J-J, Yang Y-H (2017) Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manag 148:1142–1156

    Article  CAS  Google Scholar 

  • Binod P, Janu K, Sindhu R, Pandey A (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Biofuels. Elsevier, Amsterdam, pp 229–250

    Chapter  Google Scholar 

  • Binod P, Gnansounou E, Sindhu R, Pandey A (2019) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325

    Article  Google Scholar 

  • Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Røhr ÅK, Payne CM, Sørlie M, Sandgren M (2015) Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem 290(38):22955–22969

    Article  CAS  Google Scholar 

  • Bosetto A, Justo PI, Zanardi B, Venzon SS, Graciano L, Dos Santos EL, Simão RCG (2016) Research progress concerning fungal and bacterial β-xylosidases. Appl Biochem Biotechnol 178(4):766–795

    Article  CAS  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11(5):593–600

    Article  CAS  Google Scholar 

  • Brás JL, Alves VD, Carvalho AL, Najmudin S, Prates JA, Ferreira LM, Bolam DN, Romão MJ, Gilbert HJ, Fontes CM (2012) Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. J Biol Chem 287(53):44394–44405

    Article  CAS  Google Scholar 

  • Brown ME, Barros T, Chang MC (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7(12):2074–2081

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants. Wiley, New York

    Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011a) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896

    Article  CAS  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Singh R (2011b) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400

    Article  CAS  Google Scholar 

  • Byadgi SA, Kalburgi PB (2016) Production of bioethanol from waste newspaper. Procedia Environ Sci 35:555–562

    Article  CAS  Google Scholar 

  • Cairns JRK, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67(20):3389–3405

    Article  CAS  Google Scholar 

  • Camarero S, Garcıa O, Vidal T, Colom J, del Rıo JC, Gutiérrez A, Gras JM, Monje R, Martınez MJ, Martınez ÁT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzym Microb Technol 35(2–3):113–120

    Article  CAS  Google Scholar 

  • Carrillo-Reyes J, Barragán-Trinidad M, Buitrón G (2016) Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: a review. Algal Res 18:341–351

    Article  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Celestino SMC, De Freitas SM, Medrano FJ, De Sousa MV, Ferreira Filho EX (2006) Purification and characterization of a novel pectinase from Acrophialophora nainiana with emphasis on its physicochemical properties. J Biotechnol 123(1):33–42

    Article  CAS  Google Scholar 

  • Cescutti P, Campa C, Delben F, Rizzo R (2002) Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac. Carbohydr Res 337(24):2505–2511

    Article  CAS  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950

    Article  CAS  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, Silvério da Silva S (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32(3):187–202

    Article  CAS  Google Scholar 

  • Chatterjee S, Sharma S, Prasad RK, Datta S, Dubey D, Meghvansi MK, Vairale MG, Veer V (2015) Cellulase enzyme based biodegradation of cellulosic materials: an overview. South Asian J Exp Biol 5(6):271–282

    Article  CAS  Google Scholar 

  • Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332(4):439–444

    Article  CAS  Google Scholar 

  • Chauhan S, Jaiswal V, Attri C, Seth A (2020) Random mutagenesis of thermophilic xylanase for enhanced stability and efficiency validated through molecular docking. Recent Pat Biotechnol 14(1):5–15. https://doi.org/10.2174/1872208313666190719152056

    Article  CAS  Google Scholar 

  • Chen X-A, Ishida N, Todaka N, Nakamura R, Maruyama J-I, Takahashi H, Kitamoto K (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 76(8):2556–2561

    Article  CAS  Google Scholar 

  • Chen L, Gu W, Xu H-Y, Yang G-L, Shan X-F, Chen G, Wang C-F, Qian A-D (2018) Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 8(2):114

    Article  Google Scholar 

  • Cheng CL, Che PY, Chen BY, Lee WJ, Lin CY, Chang JS (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9

    Article  CAS  Google Scholar 

  • Cherry H, Hussain T, Anwar M (2004) Extracellular glucoamylase from the isolate Aspergillus fumigatus. Pak J Biol Sci 7(11):1988–1992

    Article  Google Scholar 

  • Chethana SH, Pratap B, Roy S, Jaiswal A, Shruthi SD, Vedamurthy AB (2011) Bioethanol production from rice water waste: a low cost motor fuel. Pharmacologyonline 3:125–134

    Google Scholar 

  • Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, Aizel K, Oliéric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci 112(13):3973–3978

    Article  CAS  Google Scholar 

  • Cho C, Hong S, Moon HG, Jang YS, Kim D, Lee SY (2019) Engineering clostridial aldehyde/alcohol dehydrogenase for selective butanol production. MBio 10(1):e02683-18. https://doi.org/10.1128/mBio.02683-18

    Article  Google Scholar 

  • Choi KY, Wernick DG, Tat CA, Liao JC (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 23:53–61

    Article  CAS  Google Scholar 

  • Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior B, Bhat M (2000) Effects of purified endo-β-1, 4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 83(3):231–244

    Article  CAS  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CA (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93(2):143–158

    Article  CAS  Google Scholar 

  • Corral Bobadilla M, Lostado Lorza R, Escribano García R, Somovilla Gómez F, Vergara González EP (2017) An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies 10(1):130

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850

    Article  CAS  Google Scholar 

  • Courtade G, Forsberg Z, Heggset EB, Eijsink VG, Aachmann FL (2018) The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation. J Biol Chem 293(34):13006–13015

    Article  CAS  Google Scholar 

  • Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14(3):306

    Article  CAS  Google Scholar 

  • da Silva MA, Ferraz A (2017) Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour Technol 225:17–22

    Article  CAS  Google Scholar 

  • Das A, Mondal C, Roy S (2015) Pretreatment methods of ligno-cellulosic biomass: a review. J Eng Sci Technol Rev 8(5):141–165

    Article  CAS  Google Scholar 

  • Dassa B, Borovok I, Lombard V, Henrissat B, Lamed R, Bayer EA, Moraïs S (2017) Pan-cellulosomics of mesophilic clostridia: variations on a theme. Microorganisms 5(4):74

    Article  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  CAS  Google Scholar 

  • de Barros Ranke FF, Shinya TY, de Figueiredo FC, Núñez EGF, Cabral H, de Oliva Neto P (2020) Ethanol from rice byproduct using amylases secreted by Rhizopus microsporus var. oligosporus. Enzyme partial purification and characterization. J Environ Manag 266:110591

    Article  CAS  Google Scholar 

  • de Farias Silva CE, Meneghello D, Bertucco A (2018) A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. Biocatal Agric Biotechnol 14:172–182

    Article  Google Scholar 

  • De Souza PM (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41(4):850–861

    Article  Google Scholar 

  • Decker SR, Sheehan J, Dayton DC, Bozell JJ, Adney WS, Aden A, Hames B, Thomas SR, Bain RL, Brunecky R (2017) Biomass conversion. In: Handbook of industrial chemistry and biotechnology. Springer, New York, pp 285–419

    Chapter  Google Scholar 

  • Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:S151–S161

    Article  CAS  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216

    Article  CAS  Google Scholar 

  • Dodda SR, Sarkar N, Aikat K, Krishnaraj NR, Bhattacharjee S, Bagchi A, Mukhopadhyay SS (2016) Insights from the molecular dynamics simulation of cellobiohydrolase Cel6A molecular structural model from Aspergillus fumigatus NITDGPKA3. Comb Chem High Throughput Screen 19(4):325–333. https://doi.org/10.2174/138620731904160413193236

    Article  CAS  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551

    Article  CAS  Google Scholar 

  • Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107(1):245–256

    Article  CAS  Google Scholar 

  • Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534. https://doi.org/10.1002/biot.200700168

    Article  CAS  Google Scholar 

  • Ehimen EA, Holm-Nielsen J-B, Poulsen M, Boelsmand J (2013) Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew Energy 50:476–480

    Article  CAS  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rošker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938

    Article  CAS  Google Scholar 

  • Eijsink VG, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G (2019) On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels 12(1):1–16

    Article  Google Scholar 

  • Elleuche S, Antranikian G (2013) Starch-hydrolyzing enzymes from thermophiles. In: Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 509–533

    Chapter  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  Google Scholar 

  • Farhangrazi ZS, Copeland BR, Nakayama T, Amachi T, Yamazaki I, Powers L (1994) Oxidation-reduction properties of compounds I and II of Arthromyces ramosus peroxidase. Biochemistry 33(18):5647–5652

    Article  CAS  Google Scholar 

  • Filiatrault-Chastel C, Navarro D, Haon M, Grisel S, Herpoël-Gimbert I, Chevret D, Fanuel M, Henrissat B, Heiss-Blanquet S, Margeot A (2019) AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol Biofuels 12(1):1–15

    Article  Google Scholar 

  • Fillat U, Roncero MB (2009) Effect of process parameters in laccase-mediator system delignification of flax pulp: part I. pulp properties. Chem Eng J 152(2–3):322–329

    Article  CAS  Google Scholar 

  • Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci 111(23):8446–8451

    Article  CAS  Google Scholar 

  • Forsberg Z, Sørlie M, Petrović D, Courtade G, Aachmann FL, Vaaje-Kolstad G, Bissaro B, Røhr ÅK, Eijsink VG (2019) Polysaccharide degradation by lytic polysaccharide monooxygenases. Curr Opin Struct Biol 59:54–64

    Article  CAS  Google Scholar 

  • Gabhane J, William SP, Vaidya AN, Anand D, Wate S (2014) Pretreatment of garden biomass by alkali-assisted ultrasonication: effects on enzymatic hydrolysis and ultrastructural changes. J Environ Health Sci Eng 12(1):76

    Article  CAS  Google Scholar 

  • Ganter JL, Sabbi JC, Reed WF (2001) Real-time monitoring of enzymatic hydrolysis of galactomannans. Biopolym Orig Res Biomol 59(4):226–242

    Article  CAS  Google Scholar 

  • García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100(4):1608–1613

    Article  CAS  Google Scholar 

  • Gawande B, Goel A, Patkar A, Nene S (1999) Purification and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Appl Microbiol Biotechnol 51(4):504–509

    Article  CAS  Google Scholar 

  • Gilead S, Shoham Y (1995) Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61(1):170–174

    Article  CAS  Google Scholar 

  • Gomez S, Payne AM, Savko M, Fox GC, Shepard WE, Fernandez FJ, Cristina Vega M (2016) Structural and functional characterization of a highly stable endo-beta-1,4-xylanase from Fusarium oxysporum and its development as an efficient immobilized biocatalyst. Biotechnol Biofuels 9(1):191. https://doi.org/10.1186/s13068-016-0605-z

    Article  CAS  Google Scholar 

  • Gurumallesh P, Ramakrishnan B, Dhurai B (2019) A novel metalloprotease from banana peel and its biochemical characterization. Int J Biol Macromol 134:527–535

    Article  CAS  Google Scholar 

  • Haitjema CH, Gilmore SP, Henske JK, Solomon KV, De Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2(8):17087

    Article  CAS  Google Scholar 

  • Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sust Energ Rev 72:445–464

    Article  CAS  Google Scholar 

  • Haki G, Rakshit S (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  Google Scholar 

  • Hayashi Y, Yamazaki I (1979) The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem 254(18):9101–9106

    Article  CAS  Google Scholar 

  • Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH (2013) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135(16):6069–6077

    Article  CAS  Google Scholar 

  • Hemsworth GR, Johnston EM, Davies GJ, Walton PH (2015) Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol 33(12):747–761

    Article  CAS  Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(2):309–316

    Article  CAS  Google Scholar 

  • Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci 107(34):15293–15298

    Article  Google Scholar 

  • Higuchi T (1989) Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. ACS Publications, Washington, DC

    Book  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzym Res 2012:921362

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Homma H, Shinoyama H, Nobuta Y, Terashima Y, Amachi S, Fujii T (2007) Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried sugi (Cryptomeria japonica) twigs. J Wood Sci 53(1):80–84

    Article  Google Scholar 

  • Hong M-R, Park C-S, Oh D-K (2009) Characterization of a thermostable endo-1, 5-α-L-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol Lett 31(9):1439

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7(7):2308–2315

    Article  CAS  Google Scholar 

  • Huang L, Zhao L, Zan X, Song Y, Ratledge C (2016a) Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Biotechnol Lett 38(6):999–1008

    Article  CAS  Google Scholar 

  • Huang Y, Wang L, Chao Y, Nawawi DS, Akiyama T, Yokoyama T, Matsumoto Y (2016b) Relationships between hemicellulose composition and lignin structure in woods. J Wood Chem Technol 36(1):9–15

    Article  CAS  Google Scholar 

  • Ito K, Ogasawara H, Sugimoto T, Ishikawa T (1992) Purification and properties of acid stable xylanases from Aspergillus kawachii. Biosci Biotechnol Biochem 56(4):547–550

    Article  CAS  Google Scholar 

  • Johansen KS (2016) Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation. Trends Plant Sci 21(11):926–936

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203

    Article  CAS  Google Scholar 

  • Kaihou S, Hayashi T, Otsuru O, Maeda M (1993) Studies on the cell-wall mannan of the siphonous green algae, Codium latum. Carbohydr Res 240:207–218

    Article  CAS  Google Scholar 

  • Kaji A, Tagawa K (1970) Purification, crystallization and amino acid composition of α-L-arabinofuranosidase from Aspergillus niger. Biochim Biophys Acta Protein Struct 207(3):456–464

    Article  CAS  Google Scholar 

  • Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT (2017) Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 175:433–439

    Article  CAS  Google Scholar 

  • Kardooni R, Yusoff SB, Kari FB, Moeenizadeh L (2018) Public opinion on renewable energy technologies and climate change in peninsular Malaysia. Renew Energy 116:659–668

    Article  Google Scholar 

  • Karnaouri A, Antonopoulou I, Zerva A, Dimarogona M, Topakas E, Rova U, Christakopoulos P (2019) Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: structural insights and future perspectives for esterases and oxidative catalysts. Bioresour Technol 279:362–372

    Article  CAS  Google Scholar 

  • Kashyap D, Vohra P, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227

    Article  CAS  Google Scholar 

  • Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K (2003) Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym 53(2):183–189

    Article  CAS  Google Scholar 

  • Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67(6):595–604

    Article  CAS  Google Scholar 

  • Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. Biofuels 4(1):111–127

    Article  CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268(2):475–480

    Article  CAS  Google Scholar 

  • Khandke KM, Vithayathil P, Murthy S (1989) Purification and characterization of an α-d-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274(2):511–517

    Article  CAS  Google Scholar 

  • Kim C-H, Nashiru O, Ko JH (1996) Purification and biochemical characterization of pullulanase type I from Thermus caldophilus GK-24. FEMS Microbiol Lett 138(2–3):147–152

    Article  CAS  Google Scholar 

  • Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102(5):1342–1353

    Article  CAS  Google Scholar 

  • Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym Microb Technol 48(4–5):408–415

    Article  CAS  Google Scholar 

  • Kim KH, Choi IS, Kim HM, Wi SG, Bae H-J (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol 153:47–54

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson K-EL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnology in the pulp and paper industry. Springer, Berlin, pp 45–125

    Chapter  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7

    Article  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015

    Article  CAS  Google Scholar 

  • Laurent CV, Sun P, Scheiblbrandner S, Csarman F, Cannazza P, Frommhagen M, van Berkel WJ, Oostenbrink C, Kabel MA, Ludwig R (2019) Influence of lytic polysaccharide monooxygenase active site segments on activity and affinity. Int J Mol Sci 20(24):6219

    Article  CAS  Google Scholar 

  • Leggio LL, Simmons TJ, Poulsen J-CN, Frandsen KE, Hemsworth GR, Stringer MA, Von Freiesleben P, Tovborg M, Johansen KS, De Maria L (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6(1):1–9

    Article  CAS  Google Scholar 

  • Lenfant N, Hainaut M, Terrapon N, Drula E, Lombard V, Henrissat B (2017) A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9. Carbohydr Res 448:166–174

    Article  CAS  Google Scholar 

  • Leong W-H, Lim J-W, Lam M-K, Uemura Y, Ho Y-C (2018) Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew Sust Energ Rev 91:950–961

    Article  CAS  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41

    Article  CAS  Google Scholar 

  • Lévêque E, Janeček Š, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes. Enzym Microb Technol 26(1):3–14

    Article  Google Scholar 

  • Li D-C, Lu M, Li Y-L, Lu J (2003) Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2. Enzym Microb Technol 33(7):932–937

    Article  CAS  Google Scholar 

  • Li J, Yuan H, Yang J (2009) Bacteria and lignin degradation. Front Biol China 4(1):29–38

    Article  Google Scholar 

  • Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z (2014) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155:258–265

    Article  CAS  Google Scholar 

  • Li S-F, Xu J-Y, Bao Y-J, Zheng H-C, Song H (2015) Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability. J Biotechnol 210:8–14

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642

    Article  CAS  Google Scholar 

  • Linden JC, Decker SR, Samara M (1994) Role of acetyl esterase in biomass conversion. ACS Publications, Washington, DC

    Book  Google Scholar 

  • Liu JM, Xin XJ, Li CX, Xu JH, Bao J (2012) Cloning of thermostable cellulase genes of Clostridium thermocellum and their secretive expression in Bacillus subtilis. Appl Biochem Biotechnol 166(3):652–662. https://doi.org/10.1007/s12010-011-9456-z

    Article  CAS  Google Scholar 

  • Liu J, Liu Y, Yan F, Jiang Z, Yang S, Yan Q (2016) Gene cloning, functional expression and characterisation of a novel type I pullulanase from Paenibacillus barengoltzii and its application in resistant starch production. Protein Expr Purif 121:22–30

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495

    Article  CAS  Google Scholar 

  • Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, de Amorim Neto HB, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76

    Article  CAS  Google Scholar 

  • López-Mondéjar R, Algora C, Baldrian P (2019) Lignocellulolytic systems of soil bacteria: a vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 37(6):107374

    Article  CAS  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev 82:3863–3885

    Article  CAS  Google Scholar 

  • Mandal A (2015) Review on microbial xylanases and their applications. Appl Microbiol Biotechnol 42:45–42

    Google Scholar 

  • Manikandan K, Bhardwaj A, Ghosh A, Reddy V, Ramakumar S (2005) Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27. Acta Crystallogr Sect F: Struct Biol Cryst Commun 61(8):747–749

    Article  CAS  Google Scholar 

  • Martin Perez L, Benitez Casanova L, Moreno Perez AJ, Pérez Gómez D, Gavalda Martin S, Ledesma-García L, Valbuena Crespo N, Díez García B, Reyes-Sosa FM (2017) Coupling the pretreatment and hydrolysis of lignocellulosic biomass by the expression of beta-xylosidases. Biotechnol Bioeng 114(11):2497–2506

    Article  CAS  Google Scholar 

  • Matsuo N, Kaneko S, Kuno A, Kobayashi H, Kusakabe I (2000) Purification, characterization and gene cloning of two α-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346(1):9–15

    Article  CAS  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609

    Article  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60(6):551–565

    Article  CAS  Google Scholar 

  • Mccleary BV, Matheson NK (1987) Enzymic analysis of polysaccharide structure. In: Advances in carbohydrate chemistry and biochemistry, vol 44. Elsevier, Amsterdam, pp 147–276

    Google Scholar 

  • Mckie VA, Vincken J-P, Voragen AG, Van Den Broek LA, Stimson E, Gilbert HJ (2001) A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochem J 355(1):167–177

    Article  CAS  Google Scholar 

  • Mechaly A, Fierobe H-P, Belaich A, Belaich J-P, Lamed R, Shoham Y, Bayer EA (2001) Cohesin-dockerin interaction in cellulosome assembly A SINGLE HYDROXYL GROUP OF A DOCKERIN DOMAIN DISTINGUISHES BETWEEN NONRECOGNITION AND HIGH AFFINITY RECOGNITION. J Biol Chem 276(13):9883–9888

    Article  CAS  Google Scholar 

  • Mestechkina N, Anulov O, Smirnova N, Shcherbukhin V (2000) Composition and structure of a galactomannan macromolecule from seeds of Astragalus lehmannianus bunge. Appl Biochem Microbiol 36(5):502–506

    Article  Google Scholar 

  • Mienda BS, Yahya A, Galadima I, Shamsir M (2014) An overview of microbial proteases for industrial applications. Res J Pharm Biol Chem Sci 5(1):388–396

    Google Scholar 

  • Mierzwa M, Tokarzewska-Zadora J, Deptuła T, Rogalski J, Szczodrak J (2005) Purification and characterization of an extracellular α-D-glucuronidase from Phlebia radiata. Prep Biochem Biotechnol 35(3):243–256

    Article  CAS  Google Scholar 

  • Mihajlovski K, Buntić A, Milić M, Rajilić-Stojanović M, Dimitrijević-Branković S (2020) From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production. Waste Biomass Valoriz:1–10

    Google Scholar 

  • Mizik T (2020) Impacts of international commodity trade on conventional biofuels production. Sustainability 12(7):2626

    Article  CAS  Google Scholar 

  • Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1(1):15

    Article  CAS  Google Scholar 

  • Mojović L, Nikolić S, Rakin M, Vukasinović M (2006) Production of bioethanol from corn meal hydrolyzates. Fuel 85(12–13):1750–1755

    Article  CAS  Google Scholar 

  • Molitoris H-P, Buchalo A, Kurchenko I, Nevo E, Rawal B, Wasser S, Oren A (2000) Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. Fungal Divers 5:55–70

    Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  • Moodley P, Kana EG (2017) Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: effect on physiochemical structure and enzymatic saccharification. Bioresour Technol 235:35–42

    Article  CAS  Google Scholar 

  • Moreira L (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165

    Article  CAS  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178. https://doi.org/10.1007/s00253-008-1423-4

    Article  CAS  Google Scholar 

  • Moreno AD, Tomás-Pejó E, Ibarra D, Ballesteros M, Olsson L (2013) In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresour Technol 143:337–343

    Article  CAS  Google Scholar 

  • Morrison JM, Elshahed MS, Youssef NH (2016) Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci Rep 6(1):1–12

    Article  CAS  Google Scholar 

  • Mosier NS, Hall P, Ladisch CM, Ladisch MR (1999) Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. In: Recent progress in bioconversion of lignocellulosics. Springer, Berlin, pp 23–40

    Chapter  Google Scholar 

  • Nascimento R, Coelho R, Marques S, Alves L, Gırio F, Bon E, Amaral-Collaço M (2002) Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzym Microb Technol 31(4):549–555

    Article  CAS  Google Scholar 

  • Niehaus F, Peters A, Groudieva T, Antranikian G (2000) Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiol Lett 190(2):223–229

    Article  CAS  Google Scholar 

  • Nimbalkar PR, Khedkar MA, Parulekar RS, Chandgude VK, Sonawane KD, Chavan PV, Bankar SB (2018) Role of trace elements as cofactor: an efficient strategy toward enhanced biobutanol production. ACS Sustain Chem Eng 6(7):9304–9313. https://doi.org/10.1021/acssuschemeng.8b01611

    Article  CAS  Google Scholar 

  • Nisha M, Satyanarayana T (2013) Recombinant bacterial amylopullulanases: developments and perspectives. Bioengineered 4(6):388–400

    Article  CAS  Google Scholar 

  • Nisha M, Satyanarayana T (2016) Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl Microbiol Biotechnol 100(13):5661–5679

    Article  CAS  Google Scholar 

  • Ojima T (2013) Polysaccharide-degrading enzymes from herbivorous marine invertebrates. In: Marine enzymes for biocatalysis. Elsevier, Amsterdam, pp 333–371

    Chapter  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(1):7

    Article  CAS  Google Scholar 

  • Orhan N, Kiymaz NA, Peksel A (2014) A novel pullulanase from a fungus Hypocrea jecorina QM9414: production and biochemical characterization. Indian J Biochem Biophys 51:149–155

    CAS  Google Scholar 

  • Orth A, Tien M (1995) Biotechnology of lignin degradation. In: Genetics and biotechnology. Springer, Berlin, pp 287–302

    Chapter  Google Scholar 

  • Palmer JD, Brigham CJ (2016) Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock. Renew Sust Energ Rev 56:922–928

    Article  CAS  Google Scholar 

  • Panbangred W, Kawaguchi O, Tomita T, Shinmyo A, Okada H (1984) Isolation of two β-xylosidase genes of Bacillus pumilus and comparison of their gene products. Eur J Biochem 138(2):267–273

    Article  CAS  Google Scholar 

  • Parisot J, Langlois V, Sakanyan V, Rabiller C (2003) Cloning expression and characterization of a thermostable exopolygalacturonase from Thermotoga maritima. Carbohydr Res 338(12):1333–1337

    Article  CAS  Google Scholar 

  • Park C-S, Kawaguchi T, Sumitani J-I (2001) Purification and characterization of cellulases (CBH I and EGL 1) produced by thermophilic microorganism Streptomyces sp. M23. Appl Biol Sci 7(1):27–35

    CAS  Google Scholar 

  • Paul M, Panda G, Mohapatra PKD, Thatoi H (2020) Study of structural and molecular interaction for the catalytic activity of cellulases: an insight in cellulose hydrolysis for higher bioethanol yield. J Biomol Struct Dyn 1204:127547. https://doi.org/10.1016/j.molstruc.2019.127547

    Article  CAS  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37(1):1

    Article  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2(1):23

    Article  Google Scholar 

  • Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge JA, Amorim D (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákosa M, Fáric M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578. https://doi.org/10.1016/j.rser.2014.01.056

    Article  Google Scholar 

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13(1):101–132

    Article  CAS  Google Scholar 

  • Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95(1):540–549

    Article  CAS  Google Scholar 

  • Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK (2019) Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere 231:588–606

    Article  CAS  Google Scholar 

  • Puls J (1997) Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Macromolecular symposia, vol 1. Wiley, New York, pp 183–196

    Google Scholar 

  • Pushpam PL, Rajesh T, Gunasekaran P (2011) Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1(1):3

    Article  CAS  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen J-CN, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108(37):15079–15084

    Article  CAS  Google Scholar 

  • Rajak RC, Banerjee R (2016) Enzyme mediated biomass pretreatment and hydrolysis: a biotechnological venture towards bioethanol production. RSC Adv 6(66):61301–61311

    Article  Google Scholar 

  • Rana V, Eckard AD, Ahring BK (2014) Comparison of SHF and SSF of wet exploded corn Stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. Springerplus 3(1):516

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635

    Article  CAS  Google Scholar 

  • Rashid G, Durán-Peña M, Rahmanpour R, Sapsford D, Bugg T (2017) Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J Appl Microbiol 123(1):159–171

    Article  CAS  Google Scholar 

  • Razeq FM, Jurak E, Stogios PJ, Yan R, Tenkanen M, Kabel MA, Wang W, Master ER (2018) A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels 11(1):1–12

    Article  CAS  Google Scholar 

  • Reyes-Ortiz V, Heins RA, Cheng G, Kim EY, Vernon BC, Elandt RB, Adams PD, Sale KL, Hadi MZ, Simmons BA (2013) Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnol Biofuels 6(1):1–13

    Article  CAS  Google Scholar 

  • Romero E, Speranza M, García-Guinea J, Martínez ÁT, Martínez MJ (2007) An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. FEMS Microbiol Lett 275(1):122–129

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  Google Scholar 

  • Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn Stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegradation 109:29–35

    Article  CAS  Google Scholar 

  • Saini R, Saini HS, Dahiya A (2017) Amylases: characteristics and industrial applications. J Pharmacogn Phytochem 6(4):1865–1871

    CAS  Google Scholar 

  • Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158(4):203–210

    Article  CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    Article  CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  Google Scholar 

  • Sangkharak K, Vangsirikul P, Janthachat S (2011) Isolation of novel cellulase from agricultural soil and application for ethanol production. Int J Adv Biotechnol Res 2(2):230–239

    CAS  Google Scholar 

  • Sanhueza C, Carvajal G, Soto-Aguilar J, Lienqueo ME, Salazar O (2018) The effect of a lytic polysaccharide monooxygenase and a xylanase from Gloeophyllum trabeum on the enzymatic hydrolysis of lignocellulosic residues using a commercial cellulase. Enzym Microb Technol 113:75–82

    Article  CAS  Google Scholar 

  • Santhi VS, Bhagat AK, Saranya S, Govindarajan G, Jebakumar SRD (2014) Seaweed (Eucheuma cottonii) associated microorganisms, a versatile enzyme source for the lignocellulosic biomass processing. Int Biodeterior Biodegrad 96:144–151. https://doi.org/10.1016/j.ibiod.2014.08.007

    Article  CAS  Google Scholar 

  • Santos CR, Meza AN, Hoffmam ZB, Silva JC, Alvarez TM, Ruller R, Giesel GM, Verli H, Squina FM, Prade RA, Murakami MT (2010) Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1. Biochem Biophys Res Commun 403(2):214–219. https://doi.org/10.1016/j.bbrc.2010.11.010

    Article  CAS  Google Scholar 

  • Saraswat V, Bisaria VS (1997) Biosynthesis of xylanolytic and xylan-debranching enzymes in Melanocarpus albomyces IIS 68. J Ferment Bioeng 83(4):352–357

    Article  CAS  Google Scholar 

  • Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36(8):2032–2050

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  • Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56(5–6):634–649

    Article  CAS  Google Scholar 

  • Selvam K, Senbagam D, Selvankumar T, Sudhakar C, Kamala-Kannan S, Senthilkumar B, Govarthanan M (2017) Cellulase enzyme: homology modeling, binding site identification and molecular docking. J Mol Struct 1150:61–67. https://doi.org/10.1016/j.molstruc.2017.08.067

    Article  CAS  Google Scholar 

  • Seo E-S, Lim Y-R, Kim Y-S, Park C-S, Oh D-K (2010) Characterization of a recombinant endo-1, 5-α-l-arabinanase from the isolated bacterium Bacillus licheniformis. Biotechnol Bioprocess Eng 15(4):590–594

    Article  CAS  Google Scholar 

  • Sethi A, Scharf ME (2013) Biofuels: fungal, bacterial and insect degraders of lignocellulose. In: eLS. Wiley, Chichester

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  CAS  Google Scholar 

  • Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61(2):729–733

    Article  CAS  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Singh YD, Satapathy KB (2018) Conversion of lignocellulosic biomass to bioethanol: an overview with a focus on pretreatment. Int J Eng Technol 15:17–43

    CAS  Google Scholar 

  • Singh J, Sharma A (2012) Application of response surface methodology to the modeling of cellulase purification by solvent extraction. Adv Biosci Biotechnol 3:408–416. https://doi.org/10.4236/abb.2012.34058

    Article  Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava A (2008a) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24(5):667–673

    Article  CAS  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008b) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531

    Article  CAS  Google Scholar 

  • Singh A, Patel AK, Adsul M, Mathur A, Singhania RR (2017) Genetic modification: a tool for enhancing cellulase secretion. Biofuel Res J 4(2):600–610

    Article  CAS  Google Scholar 

  • Singh S, Singh G, Arya SK (2018) Mannans: an overview of properties and application in food products. Int J Biol Macromol 119:79–95

    Article  CAS  Google Scholar 

  • Singhania RR, Patel AK, Pandey A, Ganansounou E (2017) Genetic modification: a tool for enhancing beta-glucosidase production for biofuel application. Bioresour Technol 245:1352–1361

    Article  CAS  Google Scholar 

  • Siroosi M, Amoozegar MA, Khajeh K, Dabirmanesh B (2018) Decolorization of dyes by a novel sodium azide-resistant spore laccase from a halotolerant bacterium, Bacillus safensis sp. strain S31. Water Sci Technol 77(12):2867–2875

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) a-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44(2):173–184

    CAS  Google Scholar 

  • Sivaramakrishnan R, Muthukumar K (2012) Isolation of thermo-stable and solvent-tolerant Bacillus sp. lipase for the production of biodiesel. Appl Biochem Biotechnol 166(4):1095–1111

    Article  CAS  Google Scholar 

  • Soares M, Da Silva R, Carmona E, Gomes E (2001) Pectinolytic enzyme production by Bacillus species and their potential application on juice extraction. World J Microbiol Biotechnol 17(1):79–82

    Article  CAS  Google Scholar 

  • Somda MK, Savadogo A, Ouattara CAT, Ouattara AS, Traore AS (2011) Improvement of bioethanol production using amylasic properties from Bacillus licheniformis and yeasts strains fermentation for biomass valorization. Asian J Biotechnol 3(3):254–261

    Article  CAS  Google Scholar 

  • Sorieul M, Dickson A, Hill SJ, Pearson H (2016) Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9(8):618

    Article  CAS  Google Scholar 

  • Sriharti, Agustina W, Ratnawati L, Rahman T, Salim T (2017) Utilizing thermophilic microbe in lignocelluloses based bioethanol production. In: AIP conference proceedings, vol vol 1. AIP Publishing LLC, Melville, NY, p 020013

    Google Scholar 

  • Srivastava N, Srivastava M, Mishra P, Singh P, Pandey H, Ramteke P (2017) Nanoparticles for biofuels production from lignocellulosic waste. In: Nanoscience in food and agriculture 4. Springer, Berlin, pp 263–278

    Chapter  Google Scholar 

  • Srivastava N, Mishra P, Upadhyay S (2020) Industrial enzymes for biofuels production: recent updates and future trends. Elsevier, Amsterdam

    Google Scholar 

  • Stern J, Kahn A, Vazana Y, Shamshoum M, Morais S, Lamed R, Bayer EA (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS One 10(5):e0127326

    Article  CAS  Google Scholar 

  • Su X, Zhang J, Mackie RI, Cann IK (2012) Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass. PLoS One 7(8):e43828

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183(1):1–7

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. https://doi.org/10.1016/s0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  • Sun FF, Hong J, Hu J, Saddler JN, Fang X, Zhang Z, Shen S (2015) Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzym Microb Technol 79:42–48

    Article  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17(1):39–67

    Article  CAS  Google Scholar 

  • Suresh C, Kitaoka M, Hayashi K (2003) A thermostable non-xylanolytic α-glucuronidase of Thermotoga maritima MSB8. Biosci Biotechnol Biochem 67(11):2359–2364

    Article  CAS  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzym Microb Technol 39(4):897–902

    Article  CAS  Google Scholar 

  • Tanaka T, Kondo A (2015) Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 33(7):1403–1411

    Article  CAS  Google Scholar 

  • Tenkanen M, Thornton J, Viikari L (1995) An acetylglucomannan esterase of Aspergillus oryzae; purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. J Biotechnol 42(3):197–206

    Article  CAS  Google Scholar 

  • Teter SA (2012) DECREASE final technical report: development of a commercial ready enzyme application system for ethanol. Novozymes Inc, Davis, CA

    Book  Google Scholar 

  • Theron LW, Divol B (2014) Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 98(21):8853–8868

    Article  CAS  Google Scholar 

  • Tripathi R, Singh J, kumar Bharti R, Thakur IS (2014) Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia 54:518–529

    Article  CAS  Google Scholar 

  • Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM, Savage AV, Coughlan MP (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta Protein Struct Mol Enzymol 1596(2):366–380

    Article  CAS  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222

    Article  CAS  Google Scholar 

  • Vaidya S, Srivastava P, Rathore P, Pandey A (2015) Amylases: a prospective enzyme in the field of biotechnology. J Appl Biosci 41(1):1–18

    Google Scholar 

  • Valderrama B, Ayala M, Vazquez-Duhalt R (2002) Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 9(5):555–565

    Article  CAS  Google Scholar 

  • Van der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155

    Article  Google Scholar 

  • Van Zyl WH, Rose SH, Trollope K, Görgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45(8):1203–1213

    Article  CAS  Google Scholar 

  • Vance C, Kirk T, Sherwood R (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18(1):259–288

    Article  CAS  Google Scholar 

  • Venkatadri R, Irvine RL (1993) Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor systems: hollow fiber reactor and silicone membrane reactor. Water Res 27(4):591–596

    Article  CAS  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Verhoef R, Schols HA, McCleary BV, McKee L, Gilbert HJ, Paul Knox J (2009) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J 59(3):413–425

    Article  CAS  Google Scholar 

  • Vermaas JV, Crowley MF, Beckham GT, Payne CM (2015) Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B 119(20):6129–6143

    Article  CAS  Google Scholar 

  • Vijayalaxmi S, Prakash P, Jayalakshmi S, Mulimani V, Sreeramulu K (2013) Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl Biochem Biotechnol 171(2):382–395

    Article  CAS  Google Scholar 

  • Wainø M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7(2):87–93

    Article  CAS  Google Scholar 

  • Wang Z, Zhu J, Fu Y, Qin M, Shao Z, Jiang J, Yang F (2013) Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels 6(1):156

    Article  CAS  Google Scholar 

  • Wang X, Ma R, Xie X, Liu W, Tu T, Zheng F, You S, Ge J, Xie H, Yao B, Luo H (2017) Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering. Sci Rep 7(1):15287. https://doi.org/10.1038/s41598-017-12659-y

    Article  CAS  Google Scholar 

  • Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309

    Article  CAS  Google Scholar 

  • Wickramasinghe G, Rathnayake P, Chandrasekharan NV, Weerasinghe MSS, Wijesundera RLC, Wijesundera WSS (2017) Expression, docking, and molecular dynamics of endo-beta-1,4-xylanase I gene of Trichoderma virens in Pichia stipitis. Biomed Res Int 2017:4658584. https://doi.org/10.1155/2017/4658584

    Article  CAS  Google Scholar 

  • Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52(2):175–187

    Article  Google Scholar 

  • Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C (2016) Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Res 9(1):1–14

    Article  CAS  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    Article  CAS  Google Scholar 

  • Wongratpanya K, Imjongjairak S, Waeonukul R, Sornyotha S, Phitsuwan P, Pason P, Nimchua T, Tachaapaikoon C, Ratanakhanokchai K (2015) Multifunctional properties of glycoside hydrolase family 43 from Paenibacillus curdlanolyticus strain B-6 including exo-β-xylosidase, endo-xylanase, and α-l-arabinofuranosidase activities. Bioresources 10(2):2492–2505

    Article  CAS  Google Scholar 

  • Woolard C, Irvine R (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29(4):1159–1168

    Article  CAS  Google Scholar 

  • Wu S-J, Kim J-M, Zhou C, Jin Z-Y, Tong Q-Y (2010) Estimation of pullulan by hydrolysis with pullulanase. Biotechnol Lett 32(8):1143–1145

    Article  CAS  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzym Microb Technol 48(1):54–60

    Article  CAS  Google Scholar 

  • Xu Q-S, Yan Y-S, Feng J-X (2016) Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels 9(1):216

    Article  CAS  Google Scholar 

  • Xu W, Fu S, Yang Z, Lu J, Guo R (2018) Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system. Bioresour Technol 259:18–23

    Article  CAS  Google Scholar 

  • Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol 245:419–425

    Article  CAS  Google Scholar 

  • Yang J, Han Z (2018) Understanding the positional binding and substrate interaction of a highly thermostable GH10 xylanase from Thermotoga maritima by molecular docking. Biomol Ther 8(3):64. https://doi.org/10.3390/biom8030064

    Article  CAS  Google Scholar 

  • Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37(4):1923–1929

    Article  CAS  Google Scholar 

  • ye Lee J, Li P, Lee J, Ryu HJ, Oh KK (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol 127:119–125

    Article  CAS  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. In: Advances in applied microbiology, vol 70. Academic Press, Cambridge, MA, pp 1–55

    Chapter  Google Scholar 

  • You S, Chen CC, Tu T, Wang X, Ma R, Cai HY, Guo RT, Luo HY, Yao B (2018) Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-DeltaN through structural analysis and site-saturation mutagenesis. Biotechnol Biofuels 11:159. https://doi.org/10.1186/s13068-018-1150-8

    Article  CAS  Google Scholar 

  • Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, Sahu J (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sust Energ Rev 105:105–128

    Article  CAS  Google Scholar 

  • Zanoelo FF, de Moraes MLT, Terenzi HF, Jorge JA (2004) Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 31(4):170–176

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  • Zhang X-Z, Zhang Y-HP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang ST, El-Enshasy H, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, 1st edn. Wiley, Hoboken, NJ, pp 131–146

    Chapter  Google Scholar 

  • Zhang H, Zhao Y, Cao H, Mou G, Yin H (2015) Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. Int J Biol Macromol 79:72–75

    Article  CAS  Google Scholar 

  • Zhang Q, Han Y, Xiao H (2017) Microbial α-amylase: a biomolecular overview. Process Biochem 53:88–101

    Article  CAS  Google Scholar 

  • Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martínez AT, Martinez MJ (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzym Microb Technol 39(1):141–148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaytuğ, T., Arabacı İstifli, N., İstifli, E.S. (2021). Microbial and Bioinformatics Approach in Biofuel Production. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Basic and Advanced Concepts. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4611-6_9

Download citation

Publish with us

Policies and ethics