Skip to main content
Log in

Bacteria and lignin degradation

  • Review
  • Published:
Frontiers of Biology in China

Abstract

Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material. It is degraded and modified by bacteria in the natural world, and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems. Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling, erosion, and cavitation. With the advantages of immense environmental adaptability and biochemical versatility, bacteria deserve to be studied for their ligninolytic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeiran S A, Lambeir A M (1989). Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxide to form compound III. European Journal of Biochemistry, 186: 571

    Google Scholar 

  • Ajit V, Bala K, Jaishree P, Shailendra S, Helmut K (1994). Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiology Review, 15: 9–28

    Google Scholar 

  • Alexandre G, Zhulin I B (2000). Laccases are widespread in bacteria. Trends in Biotechnology, 18: 41–42

    PubMed  CAS  Google Scholar 

  • Alfred M M (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67: 2318–2331

    Google Scholar 

  • Antai S P, Crawford D L (1981). Degradation of softwood, hardwood and grass lignocellulose by two Streptomyces strains. Applied and Environment Microbiology, 42: 378–380

    CAS  Google Scholar 

  • Archana P I, Mahadevan A (2002). Lignin degradation by bacteria. Progress in Industrial Microbiology, 36: 311–330

    Google Scholar 

  • Argyropoulos D S, Menachem S B (1997). Lignin. In: Eriksson K E L, eds. Advances in Biochemical Engineering Biotechnology. vol 57. Germany: Springer, 127–158

    Google Scholar 

  • Balba M T, Evans W C (1977). The methanogenic fermentation of aromatic substrates. Biochemical Society Transactions, 5: 302–303

    PubMed  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2002). Copper and cadmium increase laccase activity in Peurotus ostreatus. FEMS Microbiology Letters, 206: 69–74

    PubMed  CAS  Google Scholar 

  • Barreca A M, Sjögren B, Fabbrini M, Galli C, Gentili P (2004). Catalytic efficiency of some mediators in laccase-catalyzed alcohol oxidation. Biocatalysis and Biotransformation, 22: 105–112

    CAS  Google Scholar 

  • Benner R, Maccubbin A E, Hodson R E (1984). Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Applied and Environment Microbiology, 47:998–1004

    CAS  Google Scholar 

  • Biegert T, Altenschmidt U, Eckerskorn C, Fuchs G (1993). Enzymes of anaerobic metabolism of phenolic compounds 4-hydroxybenzoate-CoA ligase from a denitrifying pseudomonas species. European Journal of Biochemistry, 213: 555–561

    PubMed  CAS  Google Scholar 

  • Björdal C G, Nilsson T, Daniel G (1999). Microbial decay of waterlogged archaeological wood found in Sweden Applicable to archaeology and conservation. International Biodeterioration & Biodegradation, 43: 63–73

    Google Scholar 

  • Blanchette R A (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 73 (1): 999–1010

    Google Scholar 

  • Boll M, Albracht S J P, Fuchs G (1997). Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinephosphate activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. European Journal of Biochemistry, 244: 840–851

    PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G (1995). Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. European Journal of Biochemistry, 234: 921–933

    PubMed  CAS  Google Scholar 

  • Boll, M, Laempe, D, Eisenreich, W, Bacher, A, Mittelberger, T, Heinze, J, Fuchs, G (2000). Non-aromatic products from anoxic conversion of benzoyl-CoA with benzoyl-CoA reductase and cyclohexa-1, 5-diene-1-carbonyl-CoA hydratase. The Journal of Biological Chemistry, 275: 21889–21895

    PubMed  CAS  Google Scholar 

  • Bourbonnais, R, Paice, M G, Freiermuth, B, Bodie, E, Borneman, S (1997). Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Applied and Environment Microbiology, 63: 4627–4632

    CAS  Google Scholar 

  • Brackmann, R, Fuchs, G (1993). Enzymes of anaerobic metabolism of phenolic compounds— 4-hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. European Journal of Biochemistry, 213: 563–571

    PubMed  CAS  Google Scholar 

  • Brunow G (2001). Methods to reveal the structure of lignin. In: Steinbüchel A, Hofrichter M, eds. Biopolymers. Vol 1—Lignin, humic substances and coal. Weinheim, Germany: Wiley-VCH, 89–116

    Google Scholar 

  • Chandra, R, Raj, A, Purohit, H J, Kapley, A (2007). Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere, 67 (4): 839–846

    PubMed  CAS  Google Scholar 

  • Claus, H, Faber, G, König, H (2002). Redox-mediated decolorization of synthetic dyes by fungal laccases. Applied Microbiology and Biotechnology, 59: 672–678

    PubMed  CAS  Google Scholar 

  • Crawford, D L, Sutherland, J B, Pometto, A L, Miller, J M (1982). Production of an aromatic aldehyde oxidase by Streptomyees viridosporus. Archives of Microbiology, 131: 140–145

    CAS  Google Scholar 

  • Crawford, R L, Kirk, T K, Harkin, J M, McCoy, E (1973). Bacterial cleavage of an arylglycerol-β-aryl ether bond. Applied Microbiology, 25: 322–324

    PubMed  CAS  Google Scholar 

  • Crawford, R L, Robinson, L E, Cheh, A M (1980). 14C-labeled lignins as substrates for the study of lignin biodegradation and transformation. In: Kirk T K, Higuchi T, Chang H M, eds. Lignin Biodegradation: Microbiology Chemistry and Applications. USA: CRC Press, 61–76

    Google Scholar 

  • Criquet, S, Joner, E, Leglize, P, Leyval, C (2000). Anthracene and mycorrhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago sativa L.). Biotechnology Letters, 22: 1733–1737

    CAS  Google Scholar 

  • Cullen, D, Kersten, P J (1996). Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzluf G A, eds. The Mycota III, Biochemistry and Molecular Biology. Berlin: Springer-Verlag, 295–306

    Google Scholar 

  • Daniel, G, Nilsson, T (1998). Developmennts in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman J W, eds. Forest Products Biotechnology. London: Taylor & Francis

    Google Scholar 

  • Dunford H B, Adeniran A J (1986). Hammett πσ correlation for reactions of horseradish peroxidase compound II with phenols. Archives of Biochemistry and Biophysics, 251: 536–542

    PubMed  CAS  Google Scholar 

  • Durán N (1997). The impact of biotechnology in the pulp and paper industry: state of art. Progress in microbial ecology (new trends and the application on biotechnology). Brazilian Soc Microbiol SBM/ICOME Publ Brazil, 543–549

  • Durán N, Esposito E (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis. B. Environmental, 28: 83–99

    Google Scholar 

  • Evans W C (1977). Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London), 270: 17–22

    PubMed  CAS  Google Scholar 

  • Evans, W C, Fuchs, G (1988). Anaerobic degradation of aromatic compounds. Annual Review of Microbiology, 42: 289–317

    PubMed  CAS  Google Scholar 

  • Everse, J, Everse, K E, Grisham, M B (1991). Peroxidases in Chemistry and Biology. Vol 1 and 2, Boca Raton: CRC Press, 620

    Google Scholar 

  • Farnet, A M, Criquet, S, Cigna, M, Gil, G, Ferre, E (2004). Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzyme and Microbial Technology, 34: 549–554

    CAS  Google Scholar 

  • Finger, A (1994). In vitro studies on the effect of polyphenol oxidase and peroxidase on the formation of polyphenolics black tea c onstituents. Journal of the Science of Food and Agriculture, 66: 293–305

    CAS  Google Scholar 

  • Forney, L J, Reddy, C A (1980). Bacterial degradation of Kraft lignin. Developments in Industrial Microbiology, 20: 163–175

    Google Scholar 

  • Fukuzumi, T, Katayama, Y (1977). Bacterial degradation of dimer relating to structure of lignin. Mokuzai Gakkaishi, 23: 214–215

    CAS  Google Scholar 

  • Galli, C, Gentili, P (2004). Chemical messengers: mediated oxidations with the enzyme laccase. Journal of Physical Organic Chemistry, 17: 973–977

    CAS  Google Scholar 

  • Gianfreda, L, Rao, M A (2004). Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme and Microbial Technology, 35: 339–354

    CAS  Google Scholar 

  • Gibson, D T, Roberts, R L, Wells, M C, Cobal, V M (1973). Oxidation of biphenyl by a Beijerinckia species. Biochemical and Biophysical Research Communications, 50: 211–219

    PubMed  CAS  Google Scholar 

  • Gibson, J, Dispensa, M, Fogg, G C, Evans, D T, Harwood, C S (1994). 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation. Journal of Bacteriology, 176: 634–641

    PubMed  CAS  Google Scholar 

  • Givaudan, A, Effosse, A, Faure, D, Potier, P, Bovillant, M, Bally, R (1993). Polyphenoloxidase from Azospirillum lipoferum isolated from the rhizosphere: evidence for a laccase in non-motile strains of Azospirillum lipoferum. FEMS Microbiology Letters, 108: 205–210

    CAS  Google Scholar 

  • Gold, D M (1998). Identification, molecular cloning and DNA sequencing of the genes encoding protocatechuate 3,4-dioxygenase in Bacillus subtilis., University of Madras, Chennai, India

    Google Scholar 

  • Hackett W F, Connors, W J, Kirk, T K, Zeikus, J G (1977). Microbial decomposition of synthetic 14C-labelled lignins in nature: Lignin biodegradation in a variety of natural materials. Applied and Environment Microbiology, 33: 43–51

    CAS  Google Scholar 

  • Haemmerli, S D, Leisola, M S, Sanglard, D, Fiechter, A (1986). Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. Journal of Biological Chemistry, 261: 6900–6903

    PubMed  CAS  Google Scholar 

  • Haider, K, Trojanowski, J, Sundman, V (1978). Screening for lignin degrading bacteria by means of 14C-labelled lignins. Archives of Microbiology, 119: 103–106

    PubMed  CAS  Google Scholar 

  • Hatakka, A (1994). Lignin-modifying enzyme from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiology Review, 13: 125–135

    CAS  Google Scholar 

  • Holt, D M (1983). Bacterial degradation of lignified wood cell walls in aerobic aquatic habitats: Decay patterns and mechanisms proposed to account for their formation. Journal of the Institute of Wood Science, 9 (5): 212–223

    Google Scholar 

  • Holt, D M, Jones, E B (1983). Bacterial degradation of lignified wood cell walls in anaerobic aquatic habitats. Applied and Environment Microbiology, 46: 722–727

    CAS  Google Scholar 

  • Janshekar, H, Fiechter, A (1982). On the bacterial degradation of lignin. European of Journal Applied Microbiology and Biotechnology, 14: 47–50

    CAS  Google Scholar 

  • Jiménez, M, García-Carmona F (1999). Oxidation of the flavonol quercetin by polyphenol oxidase. Journal of Agricultural and Food Chemistry, 47: 56–60

    PubMed  Google Scholar 

  • Kaplan, D L, Hartenstein, R (1980). Decomposition of lignins by microorganisms. Soil Biology and Biochemistry, 12: 65–75

    CAS  Google Scholar 

  • Karam, J, Nicell, J A (1997). Potential applications of enzymes in waste treatment. Journal of Chemical Technology & Biotechnology, 69:141–153

    CAS  Google Scholar 

  • Hammel, K E, Cullen, D (2008). Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology, 11: 349–355

    PubMed  CAS  Google Scholar 

  • Kern, H W (1984). Bacterial degradation of dehydropolymers of coniferyl alcohol. Archives of Microbiology, 138: 18–25

    PubMed  CAS  Google Scholar 

  • Kern, H W, Kirk, T K (1987). Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. Strains 99. Applied and Environment Microbiology, 53: 2242–2246

    CAS  Google Scholar 

  • Kerr, T J, Kerr, R D, Benner, R (1983). Isolation of a bacterium capable of degrading peanut hull lignin. Applied and Environment Microbiology, 46: 1201–1206

    Google Scholar 

  • Kim, Y S, Singh, A P, Nilsson, T (1996). Bacteria as important degraders in water-logged archaeological wood. Holzforschung, 50: 389–392

    CAS  Google Scholar 

  • Kirk, T K, Farrell, R L (1987). Enzymatic “combustion’: the microbial degradation of lignin. Annual Review of Microbiology, 41: 465–505

    PubMed  CAS  Google Scholar 

  • Ko, C H, Chen, W L, Tsai, C H, Jane, W N, Liu, C C, Tu, J (2007). Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technology, 98: 2727–2733

    PubMed  CAS  Google Scholar 

  • Lack, A, Tommasi, I, Aresta, M, Fuchs, G (1991). Catalytic properties of phenol carboxylase. In vitro study of CO2: 4-hydroxybenzoate isotope exchange reaction. European Journal of Biochemistry, 197: 473–479

    PubMed  CAS  Google Scholar 

  • Mahadevan A (1991). Biochemical aspects of disease resistance. Part II. Post Infectional Defence Mechanisms. New Delhi: Today and Tomorrow

    Google Scholar 

  • Matthias B, Georg F (2005). Unusual reactions involved in anaerobic metabolism of phenolic compounds. Biological chemistry, 386: 989–997

    Google Scholar 

  • Mayer, A M, Harel, E (1979). Polyphenoloxidase in plants. Phytochemistry, 18: 193–216

    CAS  Google Scholar 

  • McCarthy, A J (1987). Lignocellulose-degrading Actinomycetes. FEMS Microbiology Review, 46: 145–163

    CAS  Google Scholar 

  • McMillin, D R, Eggleston M K (1997). Bioinorganic chemistry of laccase. In: Messerrschmidt A, eds. Multicopper oxidases. Singapore: World Scientific, 129–166

    Google Scholar 

  • Minussi, R C, Pastore, G M, Durán N (2002). Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13: 205–216

    CAS  Google Scholar 

  • Modi, D R, Chandra, H, Garg, S K (1998). Decolorization of baggasebased paper mill effluent by the white-rot fungus Trametes versicolor. Bioresource Technology, 66: 79–81

    CAS  Google Scholar 

  • Monties, B, Fukushima, K (2001). Occurrence, function, and biosynthesis of lignins. In: Steinbüchel A, Hofrichter M, eds. Biopolymers, Vol 1-Lignin, humic substances, and coal. Weinheim, Germany: Wiley-VCH, 1–64

    Google Scholar 

  • Nagarathnamma, R, Bajpai, P, Bajpai, P K (1999). Studies on decolourization, degradation and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis subvermispora. Process Biochemistry, 34: 939–948

    CAS  Google Scholar 

  • Nie, G, Reading, S, Aust, S D (1999). Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 365(2): 328–334

    PubMed  CAS  Google Scholar 

  • Nilsson, T, Daniel, G (1992). Attempts to isolate tunnelling bacteria through physical separation from other bacteria by the use of cellophane. 23. Annual Meeting-International Research Group on Wood Preservation, Harrogate (United Kingdom), 10–15 May. Stockholm, Sweden: The International Research Group on Wood Preservation, Document No: IRG/WP/1536

    Google Scholar 

  • Novotny, C, Svobodova, K, Erbanova, P, Cajhaml, T, Kasinath, A, Lang, E, Sasek, V (2004). Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biology and Biochemistry, 36: 1545–1551

    CAS  Google Scholar 

  • Perestelo, F, Rodriquez, A, Perez, R, Carnicero, A, Fuente, G, Falcon, M A (1996). Isolation of a bacterium capable of limited degradation of industrial and labeled natural and synthetic lignins. World Journal of Microbiology & Biotechnology, 12: 111–112

    CAS  Google Scholar 

  • Petri, W, Andreas, K (2008). Laccase applications in the forest products industry: A review. Enzyme and Microbial Technology, 42: 293–307

    Google Scholar 

  • Phelan, M B, Crawford, D L, Pometto, A L 3rd (1979). Isolation of lignocellulose-decomposing actinomycetes and degradation of specifically 14C-labeled lignocelluloses by six selected Streptomyces strains. Canadian Journal of Microbiology, 25: 1270–1276

    Article  PubMed  CAS  Google Scholar 

  • Poulos, T L, Edwards, S L, Wariishi, H, Godl, M H (1993). Crystallographic refinement of lignin peroxidase at 2 Å. Journal of Biological Chemistry, 268: 4429–4440

    PubMed  CAS  Google Scholar 

  • Ralph, J, Peng, JP, Lu, FC, Hatfield, RD, Helm, RF (1999). Are lignins optically active? Journal of Agricultural and Food Chemistry, 47: 2991–2996

    PubMed  CAS  Google Scholar 

  • Ralph, K (2005). Actinomycetes and lignin degradation. Advances in Applied Microbiology, 58: 125–168

    Google Scholar 

  • Rob, A, Ball, A S, Tuncer, M, Wilson, M T (1996). Thermostable novel non-haem extracellular glycosylated peroxidase from Thermomonospora fusca BD25. Applied Biochemistry, 24: 161–170

    CAS  Google Scholar 

  • Robinson, L E, Crawford, D L (1978). Degradation of 14C-labeled lignins by Bacillus megaterium. FEMS Microbiology Letters, 4: 301–302

    CAS  Google Scholar 

  • Ruttiman, G B, Vicuna, R, Sapag, C, Seelenfreund, D (1998). Biochemical and genetic studies of bacteria metabolising lignin-related compounds. Archivos de biología y medicina experimentales, 21: 247–255

    Google Scholar 

  • Sanchez-Amat, A, Solano, F (1997). A pluripotent polyphenoloxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinase and laccases. Biochemical and Biophysical Research Communications, 240: 787–792

    PubMed  CAS  Google Scholar 

  • Schmeling, S, Narmandakh, A, Schmitt, O, Gad’on, N, Schühle, K, Fuchs, G (2004). Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. Journal of Bacteriology, 186: 8044–8057

    PubMed  CAS  Google Scholar 

  • Schühle, K, Fuchs, G (2004). Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. Journal of Bacteriology, 186: 4556–4567

    PubMed  Google Scholar 

  • Shahriar, S, Ezzatollah, K, Jacqueline, K (2007). Polyphenol oxidase activity in dormant saffron (Crocus sativus L.) corm. Acta physiologiae plantarum, 29: 463–471

    Google Scholar 

  • Singh, A P,, Nilsson, J, Daniel, G F (1990). Bacterial attack of Pinus sylvestris wood under near anaerobic conditions. Journal of the Institute of Wood Science, 12 (3): 143–157

    Google Scholar 

  • Sjoblad, R D, Bollag, J M (1981). Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Applied and Environment Microbiology, 33: 906–910

    Google Scholar 

  • Sjöström E (1993). Wood chemistry: fundamentals and applications. 2nd ed. San Diego, CA: Academic Press Inc.

    Google Scholar 

  • Smith, M R, Ratledge, C (1989). Catabolism of biphenyl by Pseudomonas sp. NCIB 10643 and Nocardia sp. NCIB 10503. Applied Microbiology and Biotechnology, 30: 395–401

    CAS  Google Scholar 

  • Srinivasan, V R, Cary, J W (1987). Biodegradation of lignin by bacteria and molecular cloning of a gene for arylether cleavage. In: Kennedy J F eds. Wood and Cellulosics. Chichester: Ellis Horwood, 267–274

    Google Scholar 

  • Susana, R C, José, L T H (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24: 500–513

    Google Scholar 

  • Tabak, H H, Chambers, C W, Kabler, P W (1959). Bacterial utilization of lignans. International Journal of systematic Bacteriology, 78: 469–476

    CAS  Google Scholar 

  • Thurston, C F (1994). The structure and function of fungal laccases. Microbiology, 140: 19–26

    Article  CAS  Google Scholar 

  • Trojanowski, J, Haider, K, Sundman, V (1997). Decomposition of 14Clabelled lignin and phenols by a Nocardia sp. Archives of Microbiology, 114: 149–153

    Google Scholar 

  • Tuomela, M, Stefen, K T, Kerko, E, Hartikainen, H, Hofritcher, M, Hatakka, A (2005). Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiology Ecology, 53: 179–186

    PubMed  CAS  Google Scholar 

  • Vicuña, R (1988). Bacterial degradation of lignin. Enzyme and Microbial Technology, 10: 646–656

    Google Scholar 

  • Watanabe, Y, Shinzato, N, Fukatsu, T (2003). Isolation of actinomycetes from termites’ guts. Bioscience Biotechnology and Biochemistry, 67: 1797–1801

    CAS  Google Scholar 

  • Welinder K G (1992). Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology, 2: 388–393

    CAS  Google Scholar 

  • Winter B, Fiechter, A, Zimmerman, W (1991). Degradation of organochlorine compounds in spent sulfite bleach plant effluents by Actinomycetes. Applied and Environment Microbiology, 57: 2858–2863

    CAS  Google Scholar 

  • Xu F (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35: 7608–7614

    PubMed  CAS  Google Scholar 

  • Yang, J S, Ni, J R, Yuan, H L, Wang, E T (2007). Biodegradation of three different wood chips by Pseudomonas sp. PKE117. International Biodeterioration & Biodegradation, 60: 90–95

    CAS  Google Scholar 

  • Yaropolov, A I, Skorobogat’ko, O V, Vartanov, S S, Varfolomeyer, S D (1994). Laccase: properties, catalytic mechanism, and applicability. Applied Biochemistry and Biotechnology, 49: 257–280

    CAS  Google Scholar 

  • Zeikus, J G, Wellstein, A L, Kirk, T K (1982). Molecular basis for the biodegradative recalcitrance of lignin in anaerobic environments. FEMS Microbiology Letters, 15: 193–197

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshui Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yuan, H. & Yang, J. Bacteria and lignin degradation. Front. Biol. China 4, 29–38 (2009). https://doi.org/10.1007/s11515-008-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-008-0097-8

Keywords

Navigation