Skip to main content

Reaction Kinetics, Molecular Action, and Mechanisms of Cellulolytic Proteins

  • Chapter
  • First Online:
Recent Progress in Bioconversion of Lignocellulosics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 65))

Abstract

Cellulolytic proteins form a complex of enzymes that work together to depolymerize cellulose to the soluble products cellobiose and glucose. Fundamental studies on their molecular mechanisms have been facilitated by advances in molecular biology. These studies have shown homology between cellulases from different microorganisms, and common mechanisms between enzymes whose modes of action have sometimes been viewed as being different, as suggested by the distribution of soluble products. A more complete picture of the cellulolytic action of these proteins has emerged and combines the physical and chemical characteristics of solid cellulose substrates with the specialized structure and function of the cellulases that break it down. This chapter combines the fundamentals of cellulose structure with enzyme function in a manner that relates the cellulose binding and biochemical kinetics at the catalytic site of the proteins to the macroscopic behavior of cellulase enzyme systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kumar A, Yoon M, Purtell C (1997) Optimizing the use of cellulase enzymes in finishing cellulose fabrics. Textile Chemist and Colorist 29(4):37–42

    CAS  Google Scholar 

  2. Gong C-S, Ladisch MR, Tsao GT (1977) Cellobiase from Trichoderma viride: purification, properties, kinetics, and mechanism. Biotechnology and Bioengineering 19:959–981

    Article  CAS  Google Scholar 

  3. Gong C-S, Ladisch MR, Tsao GT (1979) Biosynthesis, purification and mode of action of cellulase of Trichoderma reesei: hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, Advances in Chemistry Series vol. 181, American Chemical Society, Washington, DC, pp 261–287

    Google Scholar 

  4. Ladisch MR, Gong C-S, Tsao GT (1980) Cellobiose hydrolysis by endoglucanase (glucan glucanohydrolase) from Trichoderma reesei: kinetics and mechanism. Biotechnology and Bioengineering 22:1107–1126

    Article  CAS  Google Scholar 

  5. Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology 5:82–102

    Article  CAS  Google Scholar 

  6. Kleywegt GJ, Zou J-Y, Divine, Daies C, Gideon J, Sinning I, Ståhlberg J, Reinikainen T, Srisodsuk M, Terri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. Journal of Molecular Biology 272:383–397

    Article  CAS  Google Scholar 

  7. Henrissat Bernard (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal 280:309–316

    CAS  Google Scholar 

  8. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal 293:781–788

    CAS  Google Scholar 

  9. Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13: 1975–2001

    Article  CAS  Google Scholar 

  10. Ott E, Spurlin H, Grafflin M, Mark H (1954) Cellulose and cellulose derivatives. Interscience, New York, pp 217–300

    Google Scholar 

  11. Reinikainen T, Teleman O, Teeri TA (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22:392–403

    Article  CAS  Google Scholar 

  12. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO Journal 15:5739–5751

    CAS  Google Scholar 

  13. Linder M, Mattinen M-L, Konttelli M, Lindeberg G, Ståhlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Science 4:1056–1064

    CAS  Google Scholar 

  14. Vyas, Nand K (1991) Atomic features of protein-carbohydrate interactions. Current Opinion in Structural Biology 1:732–740

    Article  CAS  Google Scholar 

  15. Lee Y-H, Fan LT (1982) Kinetic studies of enzymatic hydrolysis of insoluble cellulose I. Biotechnology and Bioengineering 24:2383–2406

    Article  CAS  Google Scholar 

  16. Din N, Howard DG, Gilkes NR, Miller RC Jr, Warren RAJ, Kilburn DG (1994) C1-Cx revisited: intramolecular synergism in a cellulase. Proceedings of the National Academy of Sciences-USA 91:11,383–11387

    CAS  Google Scholar 

  17. Ladisch MR, Gong C-S, Tsao GT (1977) Corn crop residues as a potential source of single cell protein: kinetics of Trichoderma viride cellobiase action. Developments in Industrial Microbiology 18:157–168

    Google Scholar 

  18. Lee YH, Fan LT (1983) Kinetic studies of enzymatic hydrolysis of insoluble cellulose II. Biotechnology and Bioengineering 25:939–966

    Article  CAS  Google Scholar 

  19. Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Bio/Technology 9:286–290

    Article  Google Scholar 

  20. Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and Endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnology and Bioengineering 59:621–634

    Article  CAS  Google Scholar 

  21. Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1:691–699

    Article  CAS  Google Scholar 

  22. Ladisch MR, Hong J, Voloch M, Tsao GT (1981) Cellulase kinetics. In: Hollaender A, Rabson R (eds) Trends in the biology of fermentations for fuels and chemicals. Plenum, New York

    Google Scholar 

  23. Kohlmann KL, Sarikaya A, Westgate PJ, Weil J, Velayudhan A, Hendrickson R, Ladisch MR (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. In: Saddler JN, Penner MH (eds) ACS Symposium Series No. 618: Enzymatic degradation of insoluble carbohydrates saddler. American Chemical Society, pp 237–255

    Google Scholar 

  24. Medve J, Ståhlberg J, Tjernel F (1994) Adsorption and synergism of cellobiohydrolase I and II from Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnology and Bioengineering 44:1064–1073

    Article  CAS  Google Scholar 

  25. Vrsanska M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydrate Research 227:19–27

    Article  CAS  Google Scholar 

  26. Divine C, Ståhlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Terri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528

    Article  Google Scholar 

  27. Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592

    Article  CAS  Google Scholar 

  28. Gilkes N, Jervis E, Henrissat B, Tekant B, Miller RC Jr, Warren RAJ, Kilburn DG (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. Journal of Biological Chemistry 267:6743–6749

    CAS  Google Scholar 

  29. Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiological Reviews 55:303–315

    CAS  Google Scholar 

  30. Din N, Gilkes NR, Tekant B, Miller RC Jr, Warren RA, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technolog 9:1096–1099

    Article  CAS  Google Scholar 

  31. Abuja PM, Schmuck M, Pilz I, Tomme P, Claeyssens M, Esterbauer H (1988) Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. European Biophysics Journal 15:339–342

    Article  CAS  Google Scholar 

  32. Van Tilbeurgh H, Tomme P, Claeyssens M, Bikhabai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of the functional domains. FEBS Letters 204:223–227

    Article  Google Scholar 

  33. Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–385

    Article  CAS  Google Scholar 

  34. Srisodsuk M, Reinikainen T, Penttilä M, Teeri TT (1993) Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. Journal of Biological Chemistry 268:20,756–20,761

    CAS  Google Scholar 

  35. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Current Opinion in Structural Biology 4:885–892

    Article  CAS  Google Scholar 

  36. Davies Gideon, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  Google Scholar 

  37. Kim E, Irwin DC, Walker Larry P, Wilson DB (1998) Factorial optimization of a six-cellulase mixture. Biotechnology and Bioengineering 58:494–501

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mosier, N.S., Hall, P., Ladisch, C.M., Ladisch, M.R. (1999). Reaction Kinetics, Molecular Action, and Mechanisms of Cellulolytic Proteins. In: Tsao, G.T., et al. Recent Progress in Bioconversion of Lignocellulosics. Advances in Biochemical Engineering/Biotechnology, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49194-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-49194-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65577-0

  • Online ISBN: 978-3-540-49194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics